Skip to main content
Log in

Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To analyse the long-term feasibility and limitations of presurgical fMRI in a cohort of tumour and epilepsy patients with different MR-scanners at 1.5 and 3.0 T.

Methods

Four hundred and ninety-one consecutive patients undergoing presurgical fMRI between 2000 and 2012 on five different MR-scanners using established paradigms and semi-automated data processing were included. Success rates of task performance and BOLD-activation were determined for motor and somatosensory somatotopic mapping and language localisation. Procedural success, failures and imaging artifacts were analysed. MR-field strengths were compared.

Results

Two thousand three hundred fifteen of 2348 (98.6 %) attempted paradigms (1033 motor, 1220 speech, 95 somatosensory) were successfully performed. 100 paradigms (4.3 %) were repetition runs. 23 speech, 6 motor and 2 sensory paradigms failed for non-compliance and technical issues. Most language paradigm failures were noted in overt sentence generation. Average significant BOLD-activation was higher for motor than language paradigms (95.8 vs. 81.6 %). Most language paradigms showed significantly higher activation rates at 3 T compared to 1.5 T, whereas no significant difference was found for motor paradigms.

Conclusions

fMRI proved very robust for the presurgical localisation of the different motor and somatosensory body representations, as well as Broca’s and Wernicke’s language areas across different MR-scanners at 1.5 and 3.0 T over 13 years.

Key Points

Standardised presurgical motor and language fMRI is robust across various MRI platforms.

Motor fMRI is less dependent on field strength than language fMRI.

fMRI task failures are relatively low and are reduced by paradigm repetition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kekhia H, Rigolo L, Norton I, Golby AJ (2011) Special surgical considerations for functional brain mapping. Neurosurg Clin N Am 22:111–32, vii

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stippich C, SpringerLink (2015) Presurgical Functional Neuroimaging, 2nd Edition 2015, Medical Radiology, Springer Verlag Berlin Heidelberg, ISBN 978-3-662-45122-9

  3. Stippich C, Ochmann H, Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331:50–4

    Article  CAS  PubMed  Google Scholar 

  4. Stippich C, Kapfer D, Hempel E et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285:155–9

    Article  CAS  PubMed  Google Scholar 

  5. Stippich C, Hofmann R, Kapfer D et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277:25–8

    Article  CAS  PubMed  Google Scholar 

  6. Stippich C, Romanowski A, Nennig E, Kress B, Sartor K (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381:264–8

    Article  CAS  PubMed  Google Scholar 

  7. Stippich C, Mohammed J, Kress B et al (2003) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346:109–13

    Article  CAS  PubMed  Google Scholar 

  8. Stippich C, Rapps N, Dreyhaupt J et al (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–36

    Article  PubMed  Google Scholar 

  9. Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–37

    Article  PubMed  Google Scholar 

  10. Wengenroth M et al (2011) Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21:1517–25

    Article  PubMed  PubMed Central  Google Scholar 

  11. Partovi S et al (2012) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33:2151–7

    Article  CAS  PubMed  Google Scholar 

  12. Tozakidou M et al (2013) Primary motor cortex activation and lateralization in patients with tumors of the central region. NeuroImage Clinical 2:221–8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–57

    Article  PubMed  Google Scholar 

  14. Fesl G, Moriggl B, Schmid UD, Naidich TP, Herholz K, Yousry TA (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20:601–10

    Article  CAS  PubMed  Google Scholar 

  15. Willmes K, Poeck K, Weniger D, Huber W (1983) Facet theory applied to the construction and validation of the Aachen Aphasia test. Brain Lang 18:259–76

    Article  CAS  PubMed  Google Scholar 

  16. Huber W, Poeck K, Willmes K (1984) The Aachen Aphasia test. Adv Neurol 42:291–303

    CAS  PubMed  Google Scholar 

  17. Petrella JR, Shah LM, Harris KM et al (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240:793–802

    Article  PubMed  Google Scholar 

  18. FitzGerald DB, Cosgrove GR, Ronner S et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18:1529–39

    CAS  PubMed  Google Scholar 

  19. Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW (2002) Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg 97:21–32

    Article  PubMed  Google Scholar 

  20. Ulmer S, Jansen O (2010) SpringerLink (Online service). fMRI basics and clinical applications. Springer-Verlag, Berlin

    Google Scholar 

  21. Blatow M, Reinhardt J, Riffel K, Nennig E, Wengenroth M, Stippich C (2011) Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 Tesla. J Magn Reson Imaging 34:429–37

    Article  PubMed  Google Scholar 

  22. Leclercq D, Delmaire C, de Champfleur NM, Chiras J, Lehericy S (2011) Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 22:253–68, ix

    Article  PubMed  Google Scholar 

  23. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 29:843–52

    Article  CAS  PubMed  Google Scholar 

  24. Krings T, Reinges MH, Erberich S et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70:749–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seto E, Sela G, McIlroy WE et al (2001) Quantifying head motion associated with motor tasks used in fMRI. Neuroimage 14:284–97

    Article  CAS  PubMed  Google Scholar 

  26. Håberg A, Kvistad KA, Unsgård G et al (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54:902–14

    Article  PubMed  Google Scholar 

  27. Fitzsimmons JR, Scott JD, Peterson DM et al (1997) Integrated RF coil with stabilization for fMRI human cortex. Magn Reson Med 38:15–8

    Article  CAS  PubMed  Google Scholar 

  28. Edward V, Windischberger C, Cunnington R et al (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11:207–13

    Article  CAS  PubMed  Google Scholar 

  29. Debus J, Essig M, Schad LR et al (1996) Functional magnetic resonance imaging in a stereotactic setup. Magn Reson Imaging 14:1007–12

    Article  CAS  PubMed  Google Scholar 

  30. Hill DL, Smith AD, Simmons A et al (2000) Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings. J Neurosurg 93:214–23

    Article  CAS  PubMed  Google Scholar 

  31. Lüdemann L, Förschler A, Grieger W et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23:435–43

    Article  PubMed  Google Scholar 

  32. Chen CM, Hou BL, Holodny AI (2008) Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with glioma. Radiology 248:971–8

    Article  PubMed  Google Scholar 

  33. Fujiwara N, Sakatani K, Katayama Y et al (2004) Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 2:1464–71

    Article  Google Scholar 

  34. Zacà D, Jovicich J, Nadar SR et al (2014) Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. J Magn Reson Imaging 40:383–90

    Article  PubMed  Google Scholar 

  35. Zhang D, Johnston JM, Fox MD et al (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65:226–36

    PubMed  PubMed Central  Google Scholar 

  36. Lee MH, Smyser CD, Shimony JS (2012) Resting-State fMRI: A Review of Methods and Clinical Applications. AJNR Am J Neuroradiol

  37. Shimony JS, Zhang D, Johnston JM, Fox MD, Roy A, Leuthardt EC (2009) Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 16:578–83

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bettus G, Guedj E, Joyeux F et al (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30:1580–91

    Article  PubMed  Google Scholar 

  39. Partovi S, Konrad F, Karimi S et al (2012) Effects of covert and overt paradigms in clinical language fMRI. Acad Radiol 19:518–25

    Article  PubMed  Google Scholar 

  40. Rutten GJ, Ramsey NF, van Rijen PC et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51:350–60

    Article  CAS  PubMed  Google Scholar 

  41. Bizzi A, Blasi V, Falini A et al (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248:579–89

    Article  PubMed  Google Scholar 

  42. Beisteiner R, Robinson S, Wurnig M et al (2011) Clinical fMRI: evidence for a 7T benefit over 3T. Neuroimage 57:1015–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Anthony Tyndall and Prof. Christoph Stippich.

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained for all patients studied. Written informed consent was waived by the Institutional Review Board.

Some study subjects or cohorts have been previously reported, but only in other scientific context/research questions (publications listed below)

Primary motor cortex activation and lateralization in patients with tumours of the central region.

Tozakidou M, Wenz H, Reinhardt J, Nennig E, Riffel K, Blatow M, Stippich C. Neuroimage Clin. 2013 Jan 14;2:221–8.

Clinical standardized fMRI reveals altered language lateralization in patients with brain tumour. Partovi S, Jacobi B, Rapps N, Zipp L, Karimi S, Rengier F, Lyo JK, Stippich C. AJNR Am J Neuroradiol. 2012 Dec;33(11):2151–7.

Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Wengenroth M, Blatow M, Guenther J, Akbar M, Tronnier VM, Stippich C. Eur Radiol. 2011 Jul;21(7):1517–25.

Localizing and lateralizing language in patients with brain tumours: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, Tronnier VM, Sartor K. Radiology. 2007 Jun;243(3):828–36.

Methodology: retrospective, observational, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stippich.

Appendix

Appendix

Table 3 fMRI measurement techniques and MRI parameters

Legend 1(Table 1) : TR values: italic: speech/normal: motor & sensory; FOV = field of view; RF = radio frequency; MPRAGE = Magnetization-Prepared Rapid-Acquisition-Gradient-Echo sequence;

Functional MRI block designs:

Speech (Locally established covert and overt word and generation; overall n = 307 patients and modified Aachen Aphasia Sentence Generation; n = 7 patients). Standardized asymmetric block design: 4 × 36 s task alternating with 5 × 18 s periods of rest [8].

Total: 234 seconds

Speech (US-based; n = 10 patients). Standardized block design: 6 × 20 s rest alternating with 6 × 20 s periods of task [17]

Total: 240 seconds

Motor (hand, foot and tongue; overall n = 268 patients). Standardized asymmetric block design: 3 × 20 s task alternating with 4 × 20 s periods of rest [10]

Total: 140 seconds

Sensory (hand and foot; n = 31 patients): Standardized asymmetric block design: 3 × 15 s task alternating with 4 × 15 s periods of rest [6]

Total: 105 seconds

Legend 2: Block design representations of fMRI paradigms: light grey = period of rest; dark grey = task (values given in seconds). Total time is given per paradigm.

MRI Scanners and Paradigms over study period

figure a

Legend 3: Appendix Table/Figure depicting the number of patients with motor, speech and somatosensory fMRI mapping per MRI scanner used over a period of 12 years (Picker Edge 1.5 T [2000–2004]; Siemens Symphony 1.5 T [2003–2007]; Siemens Avanto 1.5 T [2009–2012]; Siemens Trio 1.5 T [2005–2009]; Siemens Verio [2009–2012]; dark grey shading = 3 T; MRI site 1 = University Hospital of Heidelberg, Germany; MRI site 2 = University Hospital of Basel, Switzerland).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyndall, A.J., Reinhardt, J., Tronnier, V. et al. Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years. Eur Radiol 27, 267–278 (2017). https://doi.org/10.1007/s00330-016-4369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4369-4

Keywords

Navigation