Skip to main content
Log in

Parotid gland tumours: MR tractography to assess contact with the facial nerve

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the feasibility of intraparotid facial nerve (VIIn) tractographic reconstructions in estimating the presence of a contact between the VIIn and the tumour, in patients requiring surgical resection of parotid tumours.

Methods

Patients underwent MR scans with VIIn tractography calculated with the constrained spherical deconvolution model. The parameters of the diffusion sequence were: b-value of 1000 s/mm2; 32 directions; voxel size: 2 mm isotropic; scan time: 9’31’. The potential contacts between VIIn branches and tumours were estimated with different initial fractional anisotropy (iFA) cut-offs compared to surgical data. Surgeons were blinded to the tractography reconstructions and identified both nerves and contact with tumours using nerve stimulation and reference photographs.

Results

Twenty-six patients were included in this study and the mean patient age was 55.2 years. Surgical direct assessment of VIIn allowed identifying 0.1 as the iFA threshold with the best sensitivity to detect tumour contact. In all patients with successful VIIn identification by tractography, surgeons confirmed nerve courses as well as lesion location in parotid glands. Mean VIIn branch FA values were significantly lower in cases with tumour contact (t-test; p ≤ 0.01).

Conclusions

This study showed the feasibility of intraparotid VIIn tractography to identify nerve contact with parotid tumours.

Key points

Diffusion imaging is an efficient method for highlighting the intraparotid VIIn.

Visualization of the VIIn may help to better manage patients before surgery.

We bring new insights to future trials for patients with VIIn dysfunction.

We aimed to provide radio-anatomical references for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VIIn:

Facial nerve

CF:

Cervicofacial branch

TF:

Temporofacial branch

DTI:

Diffusion tensor imaging

CSD:

Constrained spherical deconvolution

FA:

Fractional anisotropy

bFFE:

Balanced fast field echo

ROI:

Region of interest

FND:

Facial nerve division

ODF:

Orientation density function

SNR:

Signal to noise ratio

SH:

Spherical harmonic

IAC:

Internal auditory canal

DW:

Diffusion-weighted imaging

References

  1. Guntinas-Lichius O, Klussmann JP, Wittekindt C, Stennert E (2006) Parotidectomy for benign parotid disease at a university teaching hospital: outcome of 963 operations. Laryngoscope 116:534–540

    Article  PubMed  Google Scholar 

  2. Gaillard C, Périé S, Susini B, St Guily JL (2005) Facial nerve dysfunction after parotidectomy: the role of local factors. Laryngoscope 115:287–291

    Article  PubMed  Google Scholar 

  3. Qin Y, Zhang J, Li P, Wang Y (2011) 3D double-echo steady-state with water excitation MR imaging of the intraparotid facial nerve at 1.5T: a pilot study. AJNR Am J Neuroradiol 32:1167–1172

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Li Y, Zhang D et al (2012) 3D-FIESTA MRI at 3 T demonstrating branches of the intraparotid facial nerve, parotid ducts and relation with benign parotid tumours. Clin Radiol 67:1078–1082

    Article  PubMed  Google Scholar 

  5. Farquharson S, Tournier J-D, Calamante F et al (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118:1367–1377

    Article  PubMed  Google Scholar 

  6. Tournier J-D, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185

    Article  PubMed  Google Scholar 

  7. Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472

    Article  PubMed  Google Scholar 

  8. Calamante F, Oh S-H, Tournier J-D et al (2013) Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 34:2538–2548

    Article  PubMed  Google Scholar 

  9. Calamante F, Tournier J-D, Kurniawan ND et al (2012) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59:286–296

    Article  PubMed  Google Scholar 

  10. Tournier J-D, Yeh C-H, Calamante F et al (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42:617–625

    Article  PubMed  Google Scholar 

  11. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  12. Kwak HH, Park HD, Youn KH et al (2004) Branching patterns of the facial nerve and its communication with the auriculotemporal nerve. Surg Radiol Anat 26:494–500

    Article  CAS  PubMed  Google Scholar 

  13. Davis RA, Anson BJ, Budinger JM, Kurth LR (1956) Surgical anatomy of the facial nerve and parotid gland based upon a study of 350 cervicofacial halves. Surg Gynecol Obstet 102:385–412

    CAS  PubMed  Google Scholar 

  14. Salame K, Ouaknine GER, Arensburg B, Rochkind S (2002) Microsurgical anatomy of the facial nerve trunk. Clin Anat 15:93–99

    Article  CAS  PubMed  Google Scholar 

  15. Roundy N, Delashaw JB, Cetas JS (2012) Preoperative identification of the facial nerve in patients with large cerebellopontine angle tumors using high-density diffusion tensor imaging. J Neurosurg 116:697–702

    Article  PubMed  Google Scholar 

  16. Taoka T, Hirabayashi H, Nakagawa H et al (2006) Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging 24:1005–1010

    Article  PubMed  Google Scholar 

  17. Righini CA, Petrossi J, Reyt E, Atallah I (2014) An original submandibular approach technique sparing the cervical branch of the facial nerve. Eur Ann Otorhinolaryngol Head Neck Dis 131:143–146

    Article  CAS  PubMed  Google Scholar 

  18. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286

    Article  PubMed  Google Scholar 

  20. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815

    Article  PubMed  Google Scholar 

  21. Hodaie M, Chen DQ, Quan J, Laperriere N (2012) Tractography delineates microstructural changes in the trigeminal nerve after focal radiosurgery for trigeminal neuralgia. PLoS ONE 7:e32745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Budzik J-F, Balbi V, Verclytte S et al (2014) Diffusion tensor imaging in musculoskeletal disorders. Radiographics 34:E56–E72

    Article  PubMed  Google Scholar 

  23. Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khalil C, Hancart C, Le Thuc V et al (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291

    Article  CAS  PubMed  Google Scholar 

  25. Barcelo C, Faruch M, Lapègue F et al (2013) 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 23:3124–3130

    Article  PubMed  Google Scholar 

  26. Guggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203

    Article  PubMed  Google Scholar 

  27. Breitenseher JB, Kranz G, Hold A et al (2015) MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol 25:1911–1918

    Article  PubMed  Google Scholar 

  28. Jengojan S, Kovar F, Breitenseher J et al (2015) Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography. Eur Radiol 25:1678–1683

    Article  PubMed  Google Scholar 

  29. Tournier J-D, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786

    Article  PubMed  Google Scholar 

  30. Pannek K, Mathias JL, Bigler ED et al (2011) The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology. Neuroimage 55:133–141

    Article  PubMed  Google Scholar 

  31. Willats L, Raffelt D, Smith RE et al (2014) Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 87:18–31

    Article  PubMed  Google Scholar 

  32. Chang H-C, Juan C-J, Chiu H-C et al (2014) Effects of gender, age, and body mass index on fat contents and apparent diffusion coefficients in healthy parotid glands: an MRI evaluation. Eur Radiol 24:2069–2076

    Article  PubMed  Google Scholar 

  33. Smith RE, Tournier J-D, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104:253–265

    Article  PubMed  Google Scholar 

  34. Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the valuable assistance of Patrice Jousse (Neuroradiology – Grenoble) for editing artwork and Matthieu Roustit (Clinical Research Center – Inserm CIC1406) for helping with statistics. This work was presented at the European Congress of Radiology (ECR) in 2014. The scientific guarantor of this publication is Arnaud Attyé. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional review board approval was obtained. Written informed consent was waived by the institutional review board. Methodology: prospective, diagnostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Attyé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attyé, A., Karkas, A., Troprès, I. et al. Parotid gland tumours: MR tractography to assess contact with the facial nerve. Eur Radiol 26, 2233–2241 (2016). https://doi.org/10.1007/s00330-015-4049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4049-9

Keywords

Navigation