Skip to main content
Log in

Magnetization transfer imaging of normal and abnormal testis: preliminary results

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim was to determine the magnetization transfer ratio (MTR) of normal testes, possible variations with age and to assess the feasibility of MTR in characterizing various testicular lesions.

Methods

Eighty-six men were included. A three-dimensional gradient-echo MT sequence was performed, with/without an on-resonance binomial prepulse. MTR was calculated as: (SIo-SIm)/(SIo) × 100 %, where SIm and SIo refers to signal intensities with and without the saturation pulse, respectively. Subjects were classified as: group 1, 20-39 years; group 2, 40-65 years; and group 3, older than 65 years of age. Analysis of variance (ANOVA) followed by the least significant difference test was used to assess variations of MTR with age. Comparison between the MTR of normal testis, malignant and benign testicular lesions was performed using independent-samples t testing.

Results

ANOVA revealed differences of MTR between age groups (F = 7.51, P = 0.001). Significant differences between groups 1, 2 (P = 0.011) and 1, 3 (P < 0.001) were found, but not between 2, 3 (P = 0.082). The MTR (in percent) of testicular carcinomas was 55.0 ± 3.2, significantly higher than that of benign lesions (50.3 ± 4.0, P = 0.02) and of normal testes (47.4 ± 2.2, P < 0.001).

Conclusions

MTR of normal testes decreases with age. MTR might be helpful in the diagnostic work-up of testicular lesions.

Key Points

MTR of normal testes shows age-related changes.

Testicular carcinomas have high MTR values.

MTR may be useful in the diagnostic work-up of testicular lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MTR:

Magnetization transfer ratio

MT:

Magnetization transfer

MTI:

Magnetization transfer imaging

ANOVA:

Analysis of variance

SI:

Signal intensity

DW:

Diffusion-weighted

3D:

Three-dimensional

WFS:

Water-fat-shift

FOV:

Field of view

FFE:

Fast-field echo

ROI:

Region of interest

LSD:

Least significance difference

TGCTs:

Testicular germ cell tumours

RER:

Rough endoplasmic reticulum

LH:

Luteinizing hormone

FSH:

Follicle-stimulating hormone

References

  1. Tsili AC, Giannakis D, Sylakos A, Ntorkou A, Sofikitis N, Argyropoulou MI (2014) MR imaging of scrotum. Magn Reson Imaging Clin N Am 22:217–238

    Article  PubMed  Google Scholar 

  2. Dieckmann KP, Frey U, Lock G (2013) Contemporary diagnostic work-up of testicular germ cell tumours. Nat Rev Urol 10:703–712

    Article  PubMed  Google Scholar 

  3. Woldrich JM, Im RD, Hughes-Cassidy FM, Aganovic L, Sakamoto K (2013) Magnetic resonance imaging for intratesticular and extratesticular scrotal lesions. Can J Urol 20:6855–6859

    PubMed  Google Scholar 

  4. Kubik-Huch RA, Hailemariam S, Hamm B (1999) CT and MRI of the male genital tract: radiologic–pathologic correlation. Eur Radiol 9:16–28

    Article  CAS  PubMed  Google Scholar 

  5. Tsili AC, Argyropoulou MI, Astrakas LG et al (2013) Dynamic contrast-enhanced subtraction MRI for characterizing intratesticular mass lesions. AJR Am J Roentgenol 200:578–585

    Article  PubMed  Google Scholar 

  6. Reinges MHT, Kaiser WA, Miersch WD, Vogel J, Reiser M (1995) Dynamic MRI of benign and malignant testicular lesions: preliminary observations. Eur Radiol 5:615–622

    Article  Google Scholar 

  7. Watanabe Y, Dohke M, Ohkubo K et al (2000) Scrotal disorders: evaluation of testicular enhancement patterns at dynamic contrast-enhanced subtraction MR imaging. Radiology 217:219–227

    Article  CAS  PubMed  Google Scholar 

  8. Tsili AC, Argyropoulou MI, Giannakis D, Tsampalas S, Sofikitis N, Tsampoulas K (2012) Diffusion-weighted MR imaging of normal and abnormal scrotum: preliminary results. Asian J Androl 14:649–654

    Article  PubMed Central  PubMed  Google Scholar 

  9. Maki D, Watanabe Y, Nagayama M et al (2011) Diffusion-weighted magnetic resonance imaging in the detection of testicular torsion: feasibility study. J Magn Reson Imaging 34:1137–1142

    Article  PubMed  Google Scholar 

  10. Firat AK, Uğraş M, Karakaş HM et al (2008) 1H magnetic resonance spectroscopy of the normal testis: preliminary findings. Magn Reson Imaging 26:215–220

    Article  PubMed  Google Scholar 

  11. Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ (2010) A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod 25:847–852

    Article  PubMed  Google Scholar 

  12. Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Schnall MD (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14:279–290

    Article  CAS  PubMed  Google Scholar 

  13. Filippi M, Agosta F (2007) Magnetization transfer MRI in multiple sclerosis. J Neuroimaging 17:22S–26S

    Article  PubMed  Google Scholar 

  14. Filippi M, Rocca MA (2007) Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 4:401–413

    Article  PubMed  Google Scholar 

  15. Silver NC, Barker GJ, MacManus DG, Tofts PS, Miller DH (1997) Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J Neurol Neurosurg Psychiatry 62:223–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Xydis V, Astrakas L, Zikou A, Pantou K, Andronikou S, Argyropoulou MI (2006) Magnetization transfer ratio in the brain of preterm subjects: age-related changes during the first 2 years of life. Eur Radiol 16:215–220

    Article  PubMed  Google Scholar 

  17. Argyropoulou MI, Zikou AK, Tzovara I et al (2007) Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging. Eur Radiol 17:1669–1674

    Article  PubMed  Google Scholar 

  18. Margariti PN, Blekas K, Katzioti FG, Zikou AK, Tzoufi M, Argyropoulou MI (2007) Magnetization transfer ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1. Eur Radiol 17:433–438

    Article  PubMed  Google Scholar 

  19. Haba D, Pasco Papon A, Tanguy JY, Burtin P, Aube C, Caron-Poitreau C (2001) Use of half-dose gadolinium-enhanced MRI and magnetization transfer saturation in brain tumors. Eur Radiol 11:117–122

    Article  CAS  PubMed  Google Scholar 

  20. Huot P, Dousset V, Hatier F, Degreze P, Carlier P, Caillé JM (1997) Improvement of post-gadolinium contrast with magnetization transfer. Eur Radiol 7:S174–S177

    Article  Google Scholar 

  21. Goebell E, Fiehler J, Siemonsen S et al (2011) Macromolecule content influences proton diffusibility in gliomas. Eur Radiol 21:2626–2632

    Article  PubMed  Google Scholar 

  22. Nossin-Manor R, Chung AD, Whyte HE, Shroff MM, Taylor MJ, Sled JG (2012) Deep gray matter maturation in very preterm neonates: regional variations and pathology-related age-dependent changes in magnetization transfer ratio. Radiology 263:510–517

    Article  PubMed  Google Scholar 

  23. Argyropoulou MI, Kiortsis DN (2003) Magnetization transfer imaging of the pituitary gland. Hormones 2:98–102

    Article  PubMed  Google Scholar 

  24. Argyropoulou MI, Kiortsis DN, Metafratzi Z, Efremidis SC (2001) Magnetisation transfer imaging of the normal adenohypophysis: the effect of sex and age. Neuroradiology 43:305–308

    Article  CAS  PubMed  Google Scholar 

  25. Argyropoulou MI, Kiortsis DN (2005) MRI of the hypothalamic-pituitary axis in children. Pediatr Radiol 35:1045–1055

    Article  PubMed  Google Scholar 

  26. Heller SL, Moy L, Lavianlivi S, Moccaldi M, Kim S (2013) Differentiation of malignant and benign breast lesions using magnetization transfer imaging and dynamic contrast-enhanced MRI. J Magn Reson Imaging 37:138–145

    Article  PubMed Central  PubMed  Google Scholar 

  27. Martens MH, Lambregts DM, Papanikolaou N et al (2014) Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Invest Radiol 49:29–34

    Article  CAS  PubMed  Google Scholar 

  28. Pazahr S, Blume I, Frei P et al (2013) Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn's disease: initial experience. MAGMA 26:291–301

    Article  CAS  PubMed  Google Scholar 

  29. Rosenkrantz AB, Storey P, Gilet AG et al (2012) Magnetization transfer contrast-prepared MR imaging of the liver: inability to distinguish healthy from cirrhotic liver. Radiology 262:136–143

    Article  PubMed  Google Scholar 

  30. Li W, Zhang Z, Nicolai J, Yang GY, Omary RA, Larson AC (2012) Magnetization transfer MRI in pancreatic cancer xenograft models. Magn Reson Med 68:1291–1297

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ito K, Hayashida M, Izumitani S, Fujimine T, Onishi T, Genba K (2013) Magnetisation transfer MR imaging of the kidney: evaluation at 3.0 T in association with renal function. Eur Radiol 23:2315–2319

    Article  PubMed  Google Scholar 

  32. Chen JH, Yeung HN, Lee SK, Chai JW (1999) Evaluation of liver diseases via MTC and contrast agent. J Magn Reson Imaging 9:257–265

    Article  CAS  PubMed  Google Scholar 

  33. Hollett MD, Aisen AM, Yeung HN, Francis IR, Bree RL (1994) Magnetization transfer contrast imaging of hepatic neoplasms. Magn Reson Imaging 12:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Balaban RS, Chesnick S, Hedges K, Samaha F, Heineman FW (1991) Magnetization transfer contrast in MR imaging of the heart. Radiology 180:671–675

    Article  CAS  PubMed  Google Scholar 

  35. Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS (1991) Magnetization transfer contrast: MR imaging of the knee. Radiology 179:623–628

    Article  CAS  PubMed  Google Scholar 

  36. Seo GS, Aoki J, Moriya H et al (1996) Hyaline cartilage: in vivo and in vitro assessment with magnetization transfer imaging. Radiology 201:525–530

    Article  CAS  PubMed  Google Scholar 

  37. Swallow CE, Kahn CE Jr, Halbach RE, Tanttu JI, Sepponen RE (1992) Magnetization transfer contrast imaging of the human leg at 0.1 T: a preliminary study. Magn Reson Imaging 10:361–364

    Article  CAS  PubMed  Google Scholar 

  38. Turek PJ (2012) Male reproductive physiology. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA (eds) Campbell-Walsh urology. Elsevier Inc, Philadelphia, pp 591–605

    Chapter  Google Scholar 

  39. De Kretser DM, Kerr JB, Paulsen CA (1975) The peritubular tissue in the normal and pathological human testis. An ultrastructural study. Biol Reprod 12:317–324

    Article  PubMed  Google Scholar 

  40. Pop OT, Cotoi CG, Pleşea IE et al (2011) Histological and ultrastructural analysis of the seminiferous tubule wall in ageing testis. Rom J Morphol Embryol 52:241–248

    CAS  PubMed  Google Scholar 

  41. Kerr JB (1992) Functional cytology of the human testis. Baillieres Clin Endocrinol Metab 6:235–250

    Article  CAS  PubMed  Google Scholar 

  42. Vermeulen A (2000) Andropause. Maturitas 34:5–15

    Article  CAS  PubMed  Google Scholar 

  43. Kothari LK, Gupta AS (1974) Effect of ageing on the volume, structure and total Leydig cell content of the human testis. Int J Fertil 19:140–146

    CAS  PubMed  Google Scholar 

  44. Johnson L, Petty CS, Neaves WB (1984) Influence of age on sperm production and testicular weights in men. J Reprod Fertil 70:211–218

    Article  CAS  PubMed  Google Scholar 

  45. Arenas MI, Bethencourt FR, Fraile B, Paniagua R (1997) Immunocytochemical and quantitative study of the tunica albuginea testis in young and ageing men. Histochem Cell Biol 107:469–477

    Article  CAS  PubMed  Google Scholar 

  46. Ulbright TM, Berney DM (2010) Testicular and paratesticular tumors. In: Mills SE, Carter D, Greenson JK et al (eds) Sternberg’s diagnostic surgical pathology. Lippincott Williams & Wilkins, Philadelphia, pp 1944–2004

    Google Scholar 

  47. Lundbom N (1992) Determination of magnetization transfer contrast in tissue: an MR imaging study of brain tumors. AJR Am J Roentgenol 159:1279–1285

    Article  CAS  PubMed  Google Scholar 

  48. Talerman A, Tannenbaum M (2006) Testis. In: Tannenbaum M, Madden JF (eds) Diagnostic atlas of genitourinary pathology. Elselvier Inc, Philadelphia, pp 79–133

    Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Athina C. Tsili. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Loukas G. Astrakas kindly provided statistical advice for this manuscript. One of the authors (Loukas G. Astrakas) has significant statistical expertise. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, cross sectional study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina C. Tsili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsili, A.C., Ntorkou, A., Baltogiannis, D. et al. Magnetization transfer imaging of normal and abnormal testis: preliminary results. Eur Radiol 26, 613–621 (2016). https://doi.org/10.1007/s00330-015-3867-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3867-0

Keywords

Navigation