European Radiology

, Volume 22, Issue 7, pp 1465–1478 | Cite as

Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

  • Eric O. AboagyeEmail author
  • Fiona J. Gilbert
  • Ian N. Fleming
  • Ambros J. Beer
  • Vincent J. Cunningham
  • Paul K. Marsden
  • Dimitris Visvikis
  • Antony D. Gee
  • Ashley M. Groves
  • Laura M. Kenny
  • Gary J. Cook
  • Paul E. Kinahan
  • Melvyn Myers
  • Larry Clarke
Molecular Imaging


The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [15O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics.

Key Points

[ 15 O]-water is the gold standard for blood flow/tissue perfusion with PET

In some instances dynamic [ 18 F]-FDG uptake may be used to estimate perfusion

Radiopharmaceuticals that target integrins are now being evaluated for measuring tumour vascularity


Tumour vascularity Positron emission tomography Angiogenesis [15O]-water Integrin receptor ligand 



The authors thank the Society of Nuclear Medicine and Dr Matthew Morrison for allowing permission to reprint the data in Fig. 3. We would also like to acknowledge the Experimental Cancer Medicine Centre Imaging Steering Committee and Secretariat for supporting the workshop on tumour vascularity in May 2010 and coordinating activities, and all of the speakers and delegates who contributed to the meeting. The Experimental Cancer Medicine Centre Initiative is jointly funded by Cancer Research UK, the National Institute for Health Research in England and the Departments of Health for Scotland, Wales and Northern Ireland.

Supplementary material

330_2011_2311_MOESM1_ESM.doc (28 kb)
ESM 1 (DOC 27 kb)


  1. 1.
    Workman P, Aboagye EO, Chung Y et al (2006) Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst 98:580–598PubMedCrossRefGoogle Scholar
  2. 2.
    Lammertsma AA, Frackowiak RSJ, Hoffman JM et al (1989) The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water. J Cereb Blood Flow Metab 9:461–470PubMedCrossRefGoogle Scholar
  3. 3.
    Hoekstra CJ, Stroobants SG, Hoekstra OS, Smit EF, Vansteenkiste JF, Lammertsma AA (2002) Measurement of perfusion in stage IIIA-N2 non-small cell lung cancer using H2 15O and positron emission tomography. Clin Cancer Res 8:2109–2115PubMedGoogle Scholar
  4. 4.
    Iida H, Rhodes CG, De Silva R et al (1992) Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 33:1669–1677PubMedGoogle Scholar
  5. 5.
    De Langen AJ, Van Den Boogaart VEM, Marcus JT, Lubberink M (2008) Use of H2 15O-PET and DCE-MRI to measure tumor blood flow. Oncologist 13:631–644PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson CBJH, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and noninvasive dynamic method. Cancer Res 52:1592–1597PubMedGoogle Scholar
  7. 7.
    Wells P, Jones T, Price P (2003) Assessment of inter- and intrapatient variability in C15O 2 positron emission tomography measurements of blood flow in patients with intra-abdominal cancers. Clin Cancer Res 9:6350–6356PubMedGoogle Scholar
  8. 8.
    De Langen AJ, Lubberink M, Boellaard R et al (2008) Reproducibility of tumor perfusion measurements using15O-labeled water and PET. J Nucl Med 49:1763–1768PubMedCrossRefGoogle Scholar
  9. 9.
    Lodge MA, Jacene HA, Pili R, Wahl RL (2008) Reproducibility of tumor blood flow quantification with15O-water PET. J Nucl Med 49:1620–1627PubMedCrossRefGoogle Scholar
  10. 10.
    Burke D, Davies MM, Zweit J et al (2001) Continuous angiotensin II infusion increases tumour: Normal blood flow ratio in colo-rectal liver metastases. Br J Cancer 85:1640–1645PubMedCrossRefGoogle Scholar
  11. 11.
    Taniguchi H, Koyama H, Masuyama M et al (1996) Angiotensin-II-induced hypertension chemotherapy: Evaluation of hepatic blood flow with oxygen-15 PET. J Nucl Med 37:1522–1523PubMedGoogle Scholar
  12. 12.
    Koh T, Taniguchi H, Yamagishi H (2003) Oxygen-15 positron-emission tomography for predicting selective delivery of a chemotherapeutic agent to hepatic cancers during angiotensin II-induced hypertension. Cancer Chemother Pharmacol 51:349–358PubMedGoogle Scholar
  13. 13.
    Anderson HL, Yap JT, Miller MP, Robbins A, Jones T, Price PM (2003) Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 21:2823–2830PubMedCrossRefGoogle Scholar
  14. 14.
    Logan TF, Jadali F, Egorin MJ et al (2002) Decreased tumor blood flow as measured by positron emission tomography in cancer patients treated with interleukin-1 and carboplatin on a phase I trial. Cancer Chemother Pharmacol 50:433–444PubMedCrossRefGoogle Scholar
  15. 15.
    Kötz B, West C, Saleem A, Jones T, Price P (2009) Blood flow and vd (water): Both biomarkers required for interpreting the effects of vascular targeting agents on tumor and normal tissue. Mol Cancer Ther 8:303–309PubMedCrossRefGoogle Scholar
  16. 16.
    Herbst RS, Mullani NA, Davis DW et al (2002) Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20:3804–3814PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson H, Yap JT, Wells P et al (2003) Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 89:262–267PubMedCrossRefGoogle Scholar
  18. 18.
    Saleem A, Yap J, Osman S et al (2000) Modulation of fluorouracil tissue pharmacokinetics by eniluracil: In-vivo imaging of drug action. Lancet 355:2125–2131PubMedCrossRefGoogle Scholar
  19. 19.
    Harte RJA, Matthews JC, O'Reilly SM et al (1999) Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon alfa. J Clin Oncol 17:1580–1589PubMedGoogle Scholar
  20. 20.
    Gupta N, Saleem A, Kötz B et al (2006) Carbogen and nicotinamide increase blood flow and 5-fluorouracil delivery but not 5-fluorouracil retention in colorectal cancer metastases in patients. Clin Cancer Res 12:3115–3123PubMedCrossRefGoogle Scholar
  21. 21.
    Kurdziel KA, Figg WD, Carrasquillo JA et al (2003) Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O-water for monitoring androgen independent prostate cancer. Mol Imaging Biol 5:86–93PubMedCrossRefGoogle Scholar
  22. 22.
    Luurtsema G, Boellaard R, Greuter HNJM et al (2010) Pharmaceutical preparation of oxygen-15 labelled molecular oxygen and carbon monoxide gasses in a hospital setting. J Clin Pharm Ther 35:63–69PubMedCrossRefGoogle Scholar
  23. 23.
    Mullani NA, Herbst RS, O'Neil RG, Gould KL, Barron BJ, Abbruzzese JL (2008) Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: A comparison with 15O-labeled water-measured blood flow. J Nucl Med 49:517–523PubMedCrossRefGoogle Scholar
  24. 24.
    Tseng J, Dunnwald LK, Schubert EK et al (2004) 18F-FDG kinetics in locally advanced breast cancer: Correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45:1829–1837PubMedGoogle Scholar
  25. 25.
    Zasadny KR, Tatsumi M, Wahl RL (2003) FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers. Eur J Nucl Med Mol Imaging 30:274–280PubMedCrossRefGoogle Scholar
  26. 26.
    Dunnwald LK, Gralow JR, Ellis GK et al (2008) Tumor metabolism and blood flow changes by positron emission tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 26:4449–4457PubMedCrossRefGoogle Scholar
  27. 27.
    Semple SIK, Gilbert FJ, Redpath TW et al (2004) The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 14:2038–2045PubMedCrossRefGoogle Scholar
  28. 28.
    Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: Relationship to response to therapy. J Nucl Med 43:500–509PubMedGoogle Scholar
  29. 29.
    Mankoff DA, Dunnwald LK, Gralow JR et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44:1806–1814PubMedGoogle Scholar
  30. 30.
    Jennens RR, Rosenthal MA, Lindeman GJ, Michael M (2004) Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von hippel-lindau syndrome. Urologic Oncology: Seminars and Original Investigations 22:193–196PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu Z, Li F (2008) Serial PET scans demonstrate the success and limitations of antiangiogenic treatment in a case of lung adenocarcinoma. Clin Nucl Med 33:635–637PubMedCrossRefGoogle Scholar
  32. 32.
    Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056PubMedGoogle Scholar
  33. 33.
    Wang H, Cai W, Chen K et al (2007) A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34:2001–2010PubMedCrossRefGoogle Scholar
  34. 34.
    Nagengast WB, De Vries EG, Hospers GA et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48:1313–1319PubMedCrossRefGoogle Scholar
  35. 35.
    Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the αvβ 3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341PubMedGoogle Scholar
  36. 36.
    Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using [18F]galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949PubMedCrossRefGoogle Scholar
  37. 37.
    Beer AJ, Lorenzen S, Metz S et al (2008) Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: A PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49:22–29PubMedCrossRefGoogle Scholar
  38. 38.
    Kenny LM, Coombes RC, Oulie I et al (2008) Phase I trial of the positron-emitting arg-gly-asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49:879–886PubMedCrossRefGoogle Scholar
  39. 39.
    Beer AJ, Grosu A, Carlsen J et al (2007) [18F]galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616PubMedCrossRefGoogle Scholar
  40. 40.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100PubMedCrossRefGoogle Scholar
  41. 41.
    Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] galacto-RGD positron emission tomography. Neuro-Oncology 11:861–870PubMedCrossRefGoogle Scholar
  42. 42.
    Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Medicine 2:0244–0252CrossRefGoogle Scholar
  43. 43.
    Morrison MS, Ricketts S, Barnett J, Cuthbertson A, Tessier J, Wedge SR (2009) Use of a novel arg-gly-asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med 50:116–122PubMedCrossRefGoogle Scholar
  44. 44.
    Nagengast WB, de Korte MA, Oude Munnink TH et al (2010) 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 51:761–767Google Scholar
  45. 45.
    Meyer CR, Armato SG III, Fenimore CP et al (2009) Quantitative imaging to assess tumor response to therapy: Common themes of measurement, truth data, and error sources. Translational Oncology 2:198–210PubMedGoogle Scholar
  46. 46.
    Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20SPubMedCrossRefGoogle Scholar
  47. 47.
    Doot RK, Scheuermann JS, Christian PE, et al. (2010) Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Medical PhysicsGoogle Scholar
  48. 48.
    Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173PubMedGoogle Scholar
  49. 49.
    Weber WA, Ziegler SI, Thödtmann R, Hanauske A, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777PubMedGoogle Scholar
  50. 50.
    Crippa F, Gavazzi C, Bozzetti F et al (1997) The influence of blood glucose levels on [18F]fluorodeoxyglucose (FDG) uptake in cancer: a pet study in liver metastases from colorectal carcinomas. Tumori 83:748–752PubMedGoogle Scholar
  51. 51.
    Roy F, Beaulieu S, Boucher L, Bourdeau I, Cohade C (2009) Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med 50:178–183PubMedCrossRefGoogle Scholar
  52. 52.
    Cobelli C, Foster D, Toffolo G (2001) Tracer kinetic in biomedical research: from data to model. Kluwer Academic/Plenum, BostonGoogle Scholar
  53. 53.
    Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY (2010) Variability in PET quantitation within a multicenter consortium. Med Phys 37:3660–3666PubMedCrossRefGoogle Scholar
  54. 54.
    ICRP publication 106 (2008) Radiation dose to patients from radiopharmaceuticals- a third amendment to ICRP publication 53. Ann ICRP Publication 38:1–198Google Scholar
  55. 55.
    Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMedGoogle Scholar
  56. 56.
    Kelloff GJ, Krohn KA, Larson SM et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985PubMedCrossRefGoogle Scholar
  57. 57.
    Visvikis D, Cheze-LeRest C, Costa D, Bomanji J, Gacinovic S, Ell P (2001) Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 28:1326–1335PubMedCrossRefGoogle Scholar
  58. 58.
    Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32:294–301PubMedCrossRefGoogle Scholar
  59. 59.
    Lucignani G, Larson SM (2010) Doctor, what does my future hold? the prognostic value of FDG-PET in solid tumours. Eur J Nucl Med Mol Imaging 37:1032–1038PubMedCrossRefGoogle Scholar
  60. 60.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122S–150SPubMedCrossRefGoogle Scholar
  61. 61.
    Schelling M, Avril N, Nährig J et al (2000) Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–1695PubMedGoogle Scholar
  62. 62.
    Seol YM, Kwon BR, Song MK et al (2010) Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol 49:201–208PubMedCrossRefGoogle Scholar
  63. 63.
    Chung MK, Jeong HS, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15:5861–5868. doi: 10.1158/1078-0432.CCR-08-3290 PubMedCrossRefGoogle Scholar
  64. 64.
    Hyun SH, Choi JY, Shim YM et al (2010) Prognostic value of metabolic tumor volume measured by 18F- fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 17:115–122PubMedCrossRefGoogle Scholar
  65. 65.
    Larson SM, Erdi Y, Akhurst T et al (1999) Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. the visual response score and the change in total lesion glycolysis. Clinical Positron Imaging (Netherlands) 2:159–171CrossRefGoogle Scholar
  66. 66.
    Francis RJ, Byrne MJ, Van Der Schaaf AA et al (2007) Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans. J Nucl Med 48:1449–1458PubMedCrossRefGoogle Scholar
  67. 67.
    Cazaentre T, Morschhauser F, Vermandel M et al (2010) Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:494–504PubMedCrossRefGoogle Scholar
  68. 68.
    Erdi YE, Mawlawi O, Larson SM et al (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509PubMedCrossRefGoogle Scholar
  69. 69.
    Daisne J, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V (2003) Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 69:247–250PubMedCrossRefGoogle Scholar
  70. 70.
    Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 46:1342–1348PubMedGoogle Scholar
  71. 71.
    El Naqa I, Yang D, Apte A et al (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 34:4738–4749PubMedCrossRefGoogle Scholar
  72. 72.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D (2009) A fuzzy bayesian locally adaptive segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28:881–893PubMedCrossRefGoogle Scholar
  73. 73.
    Geets X, Lee JA, Bol A, Lonneux M, Grégoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438PubMedCrossRefGoogle Scholar
  74. 74.
    Montgomery DWG, Amira A, Zaidi H (2007) Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 34:722–736PubMedCrossRefGoogle Scholar
  75. 75.
    Hatt M, Bailly P, Turzo A, Roux C, Visvikis D (2008) PET functional volume segmentation: a robustness study. IEEE Nuclear Science Symposium Conference Record:4335–4339Google Scholar
  76. 76.
    Minn H, Clavo AC, Grenman R, Wahl RL (1995) In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 36:252–258PubMedGoogle Scholar
  77. 77.
    Nahmias C, Wahl LM (2008) Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 49:1804–1808PubMedCrossRefGoogle Scholar
  78. 78.
    Paquet N, Albert A, Foidart J, Hustinx R (2004) Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 45:784–788PubMedGoogle Scholar
  79. 79.
    Velasquez LM, Boellaard R, Kollia G et al (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50:1646–1654PubMedCrossRefGoogle Scholar
  80. 80.
    De Langen AJ, Klabbers B, Lubberink M et al (2009) Reproducibility of quantitative 18F-3′-deoxy-3′- fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 36:389–395PubMedCrossRefGoogle Scholar
  81. 81.
    Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34:1339–1347PubMedCrossRefGoogle Scholar
  82. 82.
    Hatt M, Cheze-Le Rest C, Aboagye EO et al (2010) Reproducibility of 18F-FDG and 3'-deoxy-3'-18F-fluorothymidine PET tumor volume measurements. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 51:1368–1376Google Scholar
  83. 83.
    Doot R, Allberg K, Kinahan P (2010) Errors in serial PET SUV measurements. J Nucl Med 51:126PCrossRefGoogle Scholar
  84. 84.
    Boellaard R, O'Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedCrossRefGoogle Scholar
  85. 85.
    Kinahan PE, Doot RK, Wanner-Roybal M et al (2009) PET/CT assessment of response to therapy: tumor change measurement, truth data, and error. Translational Oncology 2:223–230PubMedGoogle Scholar
  86. 86.
    Clarke LP, Croft BS, Nordstrom R, Zhang H, Kelloff G, Tatum J (2009) Quantitative imaging for evaluation of response to cancer therapy. Translational Oncology 2:195–197PubMedGoogle Scholar
  87. 87.
    Lockhart CM, MacDonald LR, Alessio AM et al (2009) Minimizing instrument calibration error to reduce the effect of variability on PET/CT SUV measurements. J Nucl Med 50:61PGoogle Scholar
  88. 88.
    Zimmerman BE, Kinahan PE, Galbraith W, Allberg K, Mawlawi O (2009) Multicenter comparison of dose calibrator accuracy for PET imaging using a standardized source. J Nucl Med 50:123PGoogle Scholar
  89. 89.
    Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539PubMedCrossRefGoogle Scholar
  90. 90.
    Liu C, Pierce Ii LA, Alessio AM, Kinahan PE (2009) The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol 54:7345–7362PubMedCrossRefGoogle Scholar
  91. 91.
    Nehmeh SA, Erdi YE (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38:167–176PubMedCrossRefGoogle Scholar
  92. 92.
    Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179PubMedCrossRefGoogle Scholar
  93. 93.
    Pan T, Sun X, Luo D (2007) Improvement of the cine-CT based 4D-CT imaging. Med Phys 34:4499–4503PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Eric O. Aboagye
    • 1
    Email author
  • Fiona J. Gilbert
    • 2
  • Ian N. Fleming
    • 3
  • Ambros J. Beer
    • 4
  • Vincent J. Cunningham
    • 5
  • Paul K. Marsden
    • 6
  • Dimitris Visvikis
    • 7
  • Antony D. Gee
    • 8
  • Ashley M. Groves
    • 9
  • Laura M. Kenny
    • 1
  • Gary J. Cook
    • 10
  • Paul E. Kinahan
    • 11
  • Melvyn Myers
    • 12
  • Larry Clarke
    • 13
  1. 1.Department of Surgery and Cancer, Faculty of MedicineImperial College LondonLondonUK
  2. 2.Radiology DepartmentUniversity of CambridgeCambridgeUK
  3. 3.NCRI PET Research Network, Aberdeen Bioimaging CentreUniversity of AberdeenAberdeenUK
  4. 4.Department of Nuclear MedicineTechnische Universität Munchen, Klinikum rechts der IsarMunichGermany
  5. 5.Institute of Medical SciencesUniversity of AberdeenAberdeenUK
  6. 6.Division of Imaging Sciences, PET Imaging CentreSt. Thomas’ HospitalLondonUK
  7. 7.INSERM National Institute of Health and Clinical Sciences LaTIM, CHU MorvanBrestFrance
  8. 8.Division of Imaging Sciences, The Rayne InstituteSt. Thomas’ HospitalLondonUK
  9. 9.Institute of Nuclear MedicineUniversity College London, University College HospitalLondonUK
  10. 10.KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging CentreSt. Thomas’ HospitalLondonUK
  11. 11.University of WashingtonSeattleUSA
  12. 12.Department of Surgery and Cancer, Faculty of MedicineImperial College LondonLondonUK
  13. 13.Imaging Technology Development BranchCancer Imaging ProgramRockvilleUSA

Personalised recommendations