Skip to main content
Log in

Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging.

Methods

Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function.

Results

Mean cortical perfusion values were 304.8 ± 34.4, 296.5 ± 44.1, and 181.9 ± 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant.

Conclusion

Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRI:

magnetic resonance imaging

ASL:

arterial spin labeling

FAIR:

flow-sensitive alternating inversion recovery

TRAS:

transplant renal artery stenosis

BOLD:

blood oxygenation level-dependent

DWI:

diffusion-weighted imaging

ADC:

apparent diffusion coefficient

NSF:

nephrogenic systemic fibrosis

FOV:

field of view

ROI:

region of interest

RF:

radiofrequency

TI:

inversion time

MRU:

MR urography

ATN:

acute tubular necrosis

GFR:

glomerular filtration ratio

EPI:

echo-planar imaging

References

  1. Leichtman AB, Cohen D, Keith D et al (2008) Kidney and pancreas transplantation in the United States, 1997–2006: the HRSA breakthrough collaboratives and the 58 DSA challenge. Am J Transplant 8:946–957

    Article  CAS  PubMed  Google Scholar 

  2. Baxter GM (2001) Pictorial review: ultrasound of renal transplantation. Clin Radiol 56:802–818

    Article  CAS  PubMed  Google Scholar 

  3. Lanzman RS, Voiculescu A, Walther C et al (2009) ECG-gated nonenhanced 3D steady-state free precession (SSFP) MR angiography (MRA) in assessment of transplant renal arteries: comparison with digital substraction angiography (DSA). Radiology 252:914–921

    Article  PubMed  Google Scholar 

  4. Blondin D, Koester A, Andersen K, Kurz KD, Moedder U, Cohnen M (2009) Renal transplant failure due to urological complications: comparison of static fluid with contrast-enhanced magnetic resonance urography. Eur J Radiol 69:300–307

    Article  PubMed  Google Scholar 

  5. Sadowski EA, Fain SB, Alford SK et al (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236:911–919

    Article  PubMed  Google Scholar 

  6. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  7. Beckmann M, Joergensen J, Bruttel K, Rudin M, Schuurman HJ (1996) Magnetic resonance imaging for the evaluation of rejection of kidney allograft in the rat. Transplant Int 9:175–183

    CAS  Google Scholar 

  8. Schuurman HJ, Beckmann N, Briner U, Bruns C, Bruttel K, Tanner M, Tolcsvai L, Weckbecker G (1996) Magnetic resonance imaging in assessment of rejection of a kidney allograft in the rat: effect of the somatostatin analogue SMS 201–995. Transplant Proc 28:3272–3275

    CAS  PubMed  Google Scholar 

  9. Szolar DH, Preidler K, Ebner F et al (1997) Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging 15:727–735

    Article  CAS  PubMed  Google Scholar 

  10. Preidler KW, Szolar D, Schreyer H, Ebner F, Kern R, Holzer H, Horina JH (1996) Differentiation of delayed kidney graft function with gadolinium-DTPA-enhanced magnetic resonance imaging and doppler ultrasound. Invest Radiol 31:364–371

    Article  CAS  PubMed  Google Scholar 

  11. Sadowski EA, Benett LK, Chan MR (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  12. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  13. Karger N, Biederer J, Lüsse S, Grimm J, Steffens JC, Heller M, Glüer CC (2000) Quantitation of renal perfusion with arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647

    Article  CAS  PubMed  Google Scholar 

  14. Boss A, Martirosian P, Claussen CD, Schick F (2006) Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0 T. NMR Biomed 19:125–132

    Article  PubMed  Google Scholar 

  15. Schwenzer NF, Schraml C, Martirosian P, Boss A, Claussen CD, Schick F (2008) MR measurement of blood flow in the parotid gland without contrast medium: a functional study before and after gustatory stimulation. NMR Biomed 21:598–605

    Article  PubMed  Google Scholar 

  16. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR True-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361

    Article  PubMed  Google Scholar 

  17. Huang Y, Artz N, Wen Z, Sadowski E, Fain S (2009) Measurement and comparison of T1 relaxation time in native and transplanted kidney cortex. In: Proceedings of the seventeenth meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawai, p 2041

  18. Roberts DA, Detre JA, Bolinger L, Insko EK, Lenkinski RE, Pentecost MJ, Leigh JS (1995) Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 196:281–286

    CAS  PubMed  Google Scholar 

  19. Fenchel M, Martirosian P, Langanke J et al (2006) Perfusion imaging with FAIR TrueFISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021

    Article  PubMed  Google Scholar 

  20. Hariharan S, Johnson C, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342:605–612

    Article  CAS  PubMed  Google Scholar 

  21. Thoeny HC, Kessler TM, Simon-Zoula S, De Keyzer F, Mohaupt M, Studer UE, Vermathen P (2008) Renal oxygenation changes during acute unilateral ureteral obstruction: assessment with blood oxygen level-dependent MR imaging—initial experience. Radiology 247:754–761

    Article  PubMed  Google Scholar 

  22. Loo MH, Felsen D, Weisman S, Marion DN, Vaughan ED (1988) Pathophysiology of obstructive uropathy. World J Urol 6:53

    Article  Google Scholar 

  23. Sheehan SJ, Moran KT, Dowsett DJ, Fitzpatrick JM (1994) Renal haemodynamics and prostaglandin synthesis in partial unilateral ureteric obstruction. Urol Res 22:279–285

    Article  CAS  PubMed  Google Scholar 

  24. Bruno S, Remuzzi G, Ruggenenti P (2004) Transplant renal artery stenosis. J Am Soc Nephrol 15:134–141

    Article  PubMed  Google Scholar 

  25. Lin YR, Wu MT, Huang TY et al (2004) Comparison of arterial spin labeling and first-pass dynamic contrast-enhanced MR imaging in the assessment of pulmonary perfusion in humans: the inflow spin-tracer saturation effect. Magn Reson Med 52:1291–1301

    Article  PubMed  Google Scholar 

  26. Warmuth C, Günther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    Article  PubMed  Google Scholar 

  27. Warmuth C, Nagel S, Hegemann O, Wlodarczyk W, Lüdemann L (2007) Accuracy of blood flow values determined by arterial spin labeling: a validation study in isolated porcine kidneys. J Magn Reson Imaging 26:353–358

    Article  PubMed  Google Scholar 

  28. Wang JJ, Heindrich KS, Jackson EK, Ildstad ST, Williams DS, Ho C (1998) Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. Kidney Int 53:1783–1791

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rotem S. Lanzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzman, R.S., Wittsack, HJ., Martirosian, P. et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20, 1485–1491 (2010). https://doi.org/10.1007/s00330-009-1675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1675-0

Keywords

Navigation