Skip to main content

Advertisement

Log in

Human brain tumor imaging with a protein-binding MR contrast agent: initial experience

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Gadofosveset is a Gd-based protein-binding blood pool agent with increased relaxivities and blood half-life compared with conventional Gd-based contrast agents (GBCAs). No experience exists about the use of gadofosveset as an extracellular agent. In this report we present the first clinical experience with gadofosveset in enhancing intracranial tumors. Ten patients with different intracranial tumors were examined with a standard dose (0.03 mmol/kg) of gadofosveset compared with a standard dose (0.1 mmol/kg) of conventional GBCA. As a result of its significantly higher relaxivity, gadofosveset could, despite its low dose, achieve a sufficient contrast enhancement. The visual rating of the intensity of enhancement and the contrast to noise ratios were comparable to conventional agents. The detection and delineation of more complex lesions was rated equal. In one nonenhancing low grade astrocytoma an enhancing nodule became visible only 5 h after gadofosvesest injection. As shown in this initial report, contrast-enhanced intracranial tumor imaging is possible with the protein-binding blood pool agent gadofosveset. The agent gives a significant tumor contrast in early postcontrast imaging comparable with conventional agents. As a result of its unique longer lasting contrast, the use of gadofosveset might enable a new approach to imaging mild or nonenhancing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brant-Zawadski M, Norman D, Newton TH (1984) Magnetic resonance imaging of the brain: the optimal screening technique. Radiology 152:71–77

    Google Scholar 

  2. Byrne TN (1994) Imaging of gliomas. Sem Oncol 21:162–171

    CAS  Google Scholar 

  3. Black PM (1991) Brain tumor. Part 2. N Engl J Med 324:1555–1564

    Article  CAS  PubMed  Google Scholar 

  4. Stack JP, Antoun NM, Jenkins JP, Metcalfe R, Isherwood I (1988) Gadolinium-DTPA as a contrast agent in magnetic resonance imaging of the brain. Neuroradiology 30:145–154

    Article  CAS  PubMed  Google Scholar 

  5. Hesselink JR, Healy ME, Press GA, Brahme FJ (1988) Benefits of Gd-DTPA for MR imaging of intracranial abnormalities. J Comput Assist Tomogr 12:266–274

    Article  CAS  PubMed  Google Scholar 

  6. Elster AD, Moody DM, Ball MR, Laster DW (1989) Is Gd-DTPA required for routine cranial MR imaging. Radiology 173:231–238

    CAS  PubMed  Google Scholar 

  7. Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrastenhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    CAS  PubMed  Google Scholar 

  8. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54:131–140

    Article  PubMed  Google Scholar 

  9. Bart J, Groen HJ, Hendrikse NH et al (2000) The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 26:449–462

    Article  CAS  PubMed  Google Scholar 

  10. Nikolaou K, Kramer H, Grosse C, Clevert D et al (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241:861–872

    Article  PubMed  Google Scholar 

  11. Runge VM (2001) A review of contrast media research in 1999–2000. Invest Radiol 36:123–130

    Article  CAS  PubMed  Google Scholar 

  12. Brekenfeld C, Foert E, Hundt W et al (2001) Enhancement of cerebral diseases: how much contrast agent is enough? Comparison of 0.1, 0.2, and 0.3 mmol/kg gadoteridol at 0.2 T with 0.1 mmol/kg gadoteridol at 1.5 T. Invest Radiol 36:266–275

    Article  CAS  PubMed  Google Scholar 

  13. Huppertz A, Rohrer M (2004) Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol Suppl 14([Suppl 5]):M12–M18

    Google Scholar 

  14. Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT, Giesel FL (2006) Contrast-enhanced magnetic resonance imaging of central nervous tumors: agents, mechanisms and applications. Top Magn Reson Imaging 17:89–106

    Article  PubMed  Google Scholar 

  15. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol Suppl 16([Suppl 2]):B15–B23

    Article  Google Scholar 

  16. Grist TM, Korosec FR, Peters DC et al (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    CAS  PubMed  Google Scholar 

  17. Perreault P, Edelmann MA, Baum RA et al (2003) MR angiography with gadofosveset trisodium for peripheral artery disease: phase II trial. Radiology 229:811–820

    Article  PubMed  Google Scholar 

  18. Goyen M, Edelmann M, Perreault P et al (2005) MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236:825–833

    Article  PubMed  Google Scholar 

  19. Eldredge HB, Spiller M, Chasse JM, Greeenwood MT, Caravan P (2006) Species dependence on plasma protein binding and relaxivityof the gadolinium-based MRI contrast agent MS-325. Invest Radiol 41:229–243

    Article  CAS  PubMed  Google Scholar 

  20. Adzamli K, Yablonski DA, Chicoine MR et al (2003) Albumin-binding MR blood pool agents as MRI contrast agents in an intracranial mouse glioma model. Magn Reson Med 49:586–590

    Article  PubMed  Google Scholar 

  21. Farooki A, Narra V, Brown J (2004) Gadofosveset EPIX/Schering. Curr Opin Investig Drugs 5:967–976

    CAS  PubMed  Google Scholar 

  22. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  23. Maravilla KR, Maldjian JA, Schmalfuss IM, Kuhn MJ, Bowen BC, Wippold FJ 2nd, Runge VM, Knopp MV, Kremer S, Wolansky LJ, Anzalone N, Essig M, Gustafsson L (2006) Contrast enhancement of central nervous system lesions: multicenter intraindividual crossover comparative study of two MR contrast agents. Radiology 240:389–400

    Article  PubMed  Google Scholar 

  24. Cowper SE, Boyer PJ (2006) Nephrogenic systemic fibrosis: an update. Curr Rheumatol Rep 8:151–157

    Article  PubMed  Google Scholar 

  25. Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis. Nephrol Dial Transplant 21:1104–1108

    Article  CAS  PubMed  Google Scholar 

  26. Thomsen HS, Marckmann P, Logager VB (2008) Update on nephrogenic systemic fibrosis. Magn Reson Imaging Clin N Am 16:551–560

    Article  PubMed  Google Scholar 

  27. Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Essig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essig, M., Rohrer, M., Giesel, F. et al. Human brain tumor imaging with a protein-binding MR contrast agent: initial experience. Eur Radiol 20, 218–226 (2010). https://doi.org/10.1007/s00330-009-1530-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1530-3

Keywords

Navigation