Using a comprehensive MRI approach in patients with a clinical suspicion of acute myocarditis, a pattern of abnormalities is found that seems to be quite specific and thus might enable to differentiate it from other myocardial diseases, in particular ischemic heart disease. Most typically is the enhancement of the subepicardial part of the LV lateral wall. Not infrequently the enhancement extends beyond the outer borders of the myocardium into the adjacent pericardium (“peri-myocarditis”) often associated with a minor/mild pericardial effusion. Extension of the lateral wall enhancement anteriorly or inferiorly is common. Septal enhancement, although relatively rare, is shown as linear midwall enhancement with normal appearance of the subendocardial layers on both sides of the ventricular septum. In the current study group, no right ventricular myocardial wall enhancement was found, most likely explaining the “false” negative findings on EMB. Functionally, regional contraction abnormalities are invariably present in the areas with wall enhancement but are visually scored as mildy to moderately hypokinetic. The impact on global ventricular function is usually limited with low-normal to mildly decreased ejection fractions, and normal to mildly increased end-diastolic ventricular volumes.
These findings are in agreement with previous reports using DE-MRI to study patients with clinical suspicion with acute myocarditis [4, 9–12]. The location of enhancement within the wall and throughout the ventricles seems to be fairly specific for myocarditis. Presence of subepicardial and midwall enhancement is highly suspicous for myocarditis in a patient with clinical suspicion for myocarditis, and always enables exclusion of ischemia-related myocardial damage, since this disease starts in the subendocardium and spreads like a wavefront in the transmural direction [9]. Moreover, the lateral wall and less frequently the (basal) ventricular septum are most commonly involved. Although speculative and definitely not proven, it might be postulated that one of the reasons for subepicardial involvement in lateral LV wall might be direct extension from the adjacent pericardial sac, that at this location is very near the LV myocardium. Eventually, the pericardial sac may act as an intermediate between left lung/pleural space and myocardium. Although in the current study population there was no evidence of concomitant pulmonary infection, nine of 20 patients showed some degree of enhancement of the pericardial layers, indicating an inflammatory reaction, which may coincide or eventually precede the myocardial involvement [12, 15]. Another hypothesis may be related to lower wall stresses in the subepicardial part of the myocardium. In a recent study, Mahrholdt and co-workers found a relationship between the type of virus and pattern of myocardial damage, as well as the clinical course [12].
Presence of increased signal on T2-weighted STIR imaging is indicative of increased myocardial water content (“myocardial edema”) and is, for example, typically found in patients with a new myocardial infarction [16, 17]. Moreover, the extent is significantly larger than the area of necrosis [16]. In our study group, in less than 50% of patients abnormalities were found on T2-weighted STIR imaging, and the extent was less extensive than the DE area. Since the pathophysiological mechanism is different, this might explain the observed differences with less extensive edema in patients with acute myocarditis. Complete or partial resorption of myocardial edema between onset of symptoms and MRI exam may be another potential explanation.
In 25% of patients (five patients) no abnormalities were found neither on T2-weighted STIR nor DE imaging, although four of five patients had an abnormal troponin I level. In the study by Abdel-aty and co-workers, sensitivity, specificity and accuracy of DE for the detection of acute myocarditis were 44%, 100% and 71% respectively, in this study nearly half of the patients showed DE [10, 18]. In the study by Mahrholdt et al. [4], 88% of patients showed contrast enhancement. This can be explained in several ways. In borderline myocarditis, myocyte injury is not present and in this group it may be possible not to see delayed contrast enhancement. On the other hand, there are cytokine and humoral mediated forms of myocarditis and again these forms may not display delayed enhancement. Also, virus type can be important for the pattern of myocardial injury. The time of the MRI study after the onset of symptoms, especially for T2-weighted STIR imaging, may also be important.
Another remarkable finding is the lack of specifity of transthoracic echocardiography in assessing regional wall motion abnormality compared with cine MRI. A likely explanation is the involvement of the lateral LV wall, often more difficultly accessible with echocardiography, and the mild or moderate degree of dysfunction.
The main limitation of the current study is the lack of validation of the MRI findings. As mentioned above, the value of EMB, as the “gold standard”, is questionable unless a targeted approach is used [4], for example, using DE-MRI to guide your biopsy. The diagnosis of myocarditis was therefore based on clinical signs, coronary angiography, ECG, laboratory, enzymes and clinical follow-up.
In conclusion, cardiac MRI is an important diagnostic tool in patients with a clinical suspicion of acute myocarditis, especially in patients with unexplained chest pain, elevated cardiac enzymes and normal coronary arteries. Not only does it allow detection of the presence and extent of myocardial damage but it also allows differentiation of other entities (e.g., ischemia-related), to detect the presence of concomitant pericardial involvement and to quantify the impact on regional and global function. However, it should be emphasized that a considerable number of patients have normal MRI findings despite increased enzyme levels and ECG abnormalities. Further research is necessary to better understand and categorize these MRI-negative patients. Finally, comprehensive MRI including DE can be used to follow-up patients with acute myocarditis, and also to better understand the underlying mechanisms of the evolution towards heart failure in some patients [12, 19].