Skip to main content
Log in

1H MR spectroscopic imaging in patients with MRI-negative extratemporal epilepsy: correlation with ictal onset zone and histopathology

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopy (1H MRS) is beneficial in the lateralization of the epileptogenic zone in temporal lobe epilepsy; however, its role in extratemporal and, especially, MRI-negative epilepsy has not been established. This study seeks to verify how 1H MRS could help in localizing the epileptogenic zone in patients with MRI-negative extratemporal epilepsy. Seven patients (8–23 years) with MRI-negative refractory focal epilepsy were studied using 1H MRS on a 1.5T MR system. Chemical shift imaging sequence in the transversal plane was directed towards the suspected epileptogenic zone localized by seizure semiology, scalp video/EEG, ictal SPECT and 18FDG-PET. Spectra were evaluated using the program CULICH, and the coefficient of asymmetry was used for quantitative lateralization. MRS detected lateralization in all patients and was able to localize pathology in five. The most frequent findings were decreased ratios of N-acetylaspartate to choline compounds characterized by increasing choline concentration. The localization of the 1H MRS abnormality correlated well with ictal SPECT and subdural mapping. In all cases, histopathological analysis revealed MRI-undetected focal cortical dysplasias. 1H MRS could be more sensitive for the detection of discrete malformations of cortical development than conventional MRI. It is valuable in the presurgical evaluation of patients without MRI-apparent lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garcia PA, Laxer KD, Ng T (1995) Application of spectroscopic imaging in epilepsy. Magn Reson Imaging 13:1181–1185

    Article  PubMed  CAS  Google Scholar 

  2. Zimmerman RA, Wang Z (1999) Proton magnetic resonance spectroscopy. Crit Rev Neurosurg 9:161–166

    Article  PubMed  Google Scholar 

  3. Bonavita S, Di Salle F, Tedeschi G (1999) Proton MRS in neurological disorders. Eur J Radiol 30:125–131

    Article  PubMed  CAS  Google Scholar 

  4. Ranjeva JP, Confort-Gouny S, Le Fur Y, Cozzone PJ (2000) Magnetic resonance spectroscopy of brain in epilepsy. Childs Nerv Syst 16:235–241

    Article  PubMed  CAS  Google Scholar 

  5. Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL (1997) Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42:737–746

    Article  PubMed  CAS  Google Scholar 

  6. Hajek M, Dezortova M, Komarek V (1998) 1H MR spectroscopy in patients with mesial temporal epilepsy. Magn Reson Mater Phy 7:95–114

    CAS  Google Scholar 

  7. Hammen T, Stefan H, Eberhardt KE, W-Huk BH, Tomandl BF (2003) Clinical applications of 1H-MR spectroscopy in the evaluation of epilepsies-what do pathological spectra stand for with regard to current results and what answers do they give to common clinical questions concerning the treatment of epilepsies? Acta Neurol Scand 108:223–238

    Article  PubMed  CAS  Google Scholar 

  8. Hajek M, Komarek V, Dezortova M, Hlavnicka P, Smejkalova M, Faladova L, Hovorka J (1995) Determination of epileptogenic focus using 1H MR spectroscopy. (Cz) Ces Slov Neurol Neurochir 3:103–107

    Google Scholar 

  9. Hetherington HP, Pan JW, Spencer DD (2000) 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 16:477–483

    Article  Google Scholar 

  10. Bernasconi A, Tasch E, Cendes F, Li LM, Arnold DL (2002) Proton magnetic resonance spectroscopic imaging suggests progressive neuronal damage in human temporal lobe epilepsy. Prog Brain Res 135:297–304

    Article  PubMed  CAS  Google Scholar 

  11. Klose U, Jiru F (2005) Principles of MR spectroscopy and chemical shift imaging. In: Landini L (ed) Advanced image processing in magnetic resonance imaging (signal processing and communications). CRC, Boca Raton, pp 369–409

  12. Garcia PA, Laxer KD, van der Grond J, Hugg JW, Matson GB, Weiner MW (1995) Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 37:279–281

    Article  PubMed  Google Scholar 

  13. Stanley JA, Cendes F, Dubeau F, Andermann F, Arnold DL (1998) Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 39:267–273

    Article  PubMed  CAS  Google Scholar 

  14. Lundbom N, Gaily E, Vuori K, Paetau R, Liukkonen E, Rajapakse JC, Valanne L, Hakkinen AM, Granstrom ML (2001) Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy. Epilepsia 42:1507–1514

    Article  PubMed  CAS  Google Scholar 

  15. Guye M, Ranjeva JP, Le Fur Y, Bartolomei F, Confort-Gouny S, Regis J, Chauvel P, Cozzone PJ (2005) 1H-MRS imaging in intractable epilepsies characterized by depth electrode recording. Neuroimage 26:1174–1183

    Article  PubMed  CAS  Google Scholar 

  16. Jiru F, Skoch A, Hajek M (2003) LCModel for quantitative single voxel spectroscopy and spectroscopic imaging: a comparison. Magn Reson Mater Phy 16 (Suppl 1):S211. Abstract

    Google Scholar 

  17. Jiru F, Skoch A, Klose U, Grodd W, Hajek M (2006) Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds. Magn Reson Mater Phy 19:1–14

    Article  CAS  Google Scholar 

  18. Jiru F, Dezortova M, Burian M, Hajek M (2003) The role of relaxation time corrections for the evaluation of long and short echo time 1H MR spectra of the hippocampus by NUMARIS and LCModel techniques. Magn Reson Mater Phy 16:135–143

    Article  Google Scholar 

  19. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62 (Suppl 3):S2–S8

    PubMed  CAS  Google Scholar 

  20. Nagae-Poetscher LM, Bonekamp D, Barker PB, Brant LJ, Kaufmann WE, Horska A (2004) Asymmetry and gender effect in functionally lateralized cortical regions: a proton MRS imaging study. J Magn Reson Imaging 19:27–33

    Article  PubMed  Google Scholar 

  21. Siegel AM, Jobst BC, Thadani VM, Rhodes CH, Lewis PJ, Roberts DW, Williamson PD (2000) Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 42:883–888

    Article  Google Scholar 

  22. Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Lüders J, Kotagal P, Lachhwani D, Dinner D, Lüders HO (2005) Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry 76:710–713

    Article  PubMed  CAS  Google Scholar 

  23. Blume WT, Ganapathy GR, Munoz D, Lee DH (2004) Indices of resective surgery effectiveness for intractable nonlesional focal epilepsy. Epilepsia 45:46–53

    Article  PubMed  Google Scholar 

  24. Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R et al (2002) Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 125:1719–1732

    Article  PubMed  CAS  Google Scholar 

  25. Bernasconi A (2003) Advanced MRI analysis methods for detection of focal cortical dysplasia. Epileptic Disord 5:81–84

    Google Scholar 

  26. Kuzniecky R, Hetherington H, Pan J, Hugg J, Palmer C, Gilliam F et al (1997) Proton spectroscopic imaging at 4.1 Tesla in patients with malformations of cortical development and epilepsy. Neurology 48:1018–1024

    PubMed  CAS  Google Scholar 

  27. Li LM, Cendes F, Bastos AC, Andermann F, Dubeau F, Arnold DL (1998) Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study. Neurology 50:755–759

    PubMed  CAS  Google Scholar 

  28. Kaminaga T, Kobayashi M, Abe T (2001) Proton magnetic resonance spectroscopy in disturbances of cortical development. Neuroradiology 43:575–580

    Article  PubMed  CAS  Google Scholar 

  29. Simone IL, Federico F, Tortorella C, De Blasi R, Bellomo R, Lucivero V et al (1999) Metabolic changes in neuronal migration disorders: evaluation by combined MRI and proton MR spectroscopy. Epilepsia 40:872–879

    Article  PubMed  CAS  Google Scholar 

  30. Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS (2001) Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy. Brain 124:427–436

    Article  PubMed  CAS  Google Scholar 

  31. Palmini A, Andermann F, Olivier A, Tampieri D, Robitaille Y, Andermann E, Wright G (1991) Focal neuronal migration disorders and intractable partial epilepsy: a study of 30 patients. Ann Neurol 30:741–749

    Article  PubMed  CAS  Google Scholar 

  32. Sisodiya SM (2004) Surgery for focal cortical dysplasia. Brain 127:2383–2384

    Article  PubMed  CAS  Google Scholar 

  33. Urbach H (2005) Imaging of the epilepsies. Eur Radiol 15(3):494–500

    Article  PubMed  CAS  Google Scholar 

  34. Duncan JS (2002) Neuroimaging methods to evaluate the etiology and consequences of epilepsy. Epilepsy Res 50:131–140

    Article  PubMed  Google Scholar 

  35. Henry TR, Van Heertum RL (2003) Positron emission tomography and single photon emission computed tomography in epilepsy care. Semin Nucl Med 33:88–104

    Article  PubMed  Google Scholar 

  36. Petroff OAC, Errante LD, Kim JH (2003) N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 60:1646–1651

    Article  PubMed  CAS  Google Scholar 

  37. Boulanger Y, Labell M, Khiat A (2000) Role of phospholipase A2 on the variation of the choline signal intensity observed by 1H magnetic resonance spectroscopy in brain diseases. Brain Res Rev 33:380–389

    Article  PubMed  CAS  Google Scholar 

  38. Yegin A, Akbas SH, Ozben T, Korgun DK (2002) Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol Scand 106:258–262

    Article  PubMed  CAS  Google Scholar 

  39. Lawson JA, Birchansky S, Pacheco E, Jayakar P, Resnick TJ, Dean P, Duchowny MS (2005) Distinct clinicopathologic subtypes of cortical dysplasia of Taylor. Neurology 64:55–61

    Article  PubMed  CAS  Google Scholar 

  40. Colombo N, Citterio A, Galli C, Tassi L, Lo Russo G, Scialfa G, Spreafico R (2003) Neuroimaging of focal cortical dysplasia: neuropathological correlations. Epileptic Disord 5 (Suppl 2):S67–72

    PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Grant Agency of Czech Republic, no. 309/02/D076, Internal Grant Agency of Ministry of Health, Czech Republic, no. NF/7411-3 and NR/8843-4, Ministry of Education, Youth and Sport, Czech Republic LC554, and research projects no. 00000064203-4, 111300003, 111300004 and MZO 00023001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hajek.

Additional information

Pavel Krsek and Milan Hajek contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krsek, P., Hajek, M., Dezortova, M. et al. 1H MR spectroscopic imaging in patients with MRI-negative extratemporal epilepsy: correlation with ictal onset zone and histopathology. Eur Radiol 17, 2126–2135 (2007). https://doi.org/10.1007/s00330-007-0594-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0594-1

Keywords

Navigation