Skip to main content

Advertisement

Log in

Evaluation of automated attenuation-based tube current adaptation for coronary calcium scoring in MDCT in a cohort of 262 patients

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of our study was to evaluate attenuation-based tube current adaptation in coronary calcium scoring using ECG-gated multi-detector-row CT (MDCT). A total of 262 patients underwent non-enhanced cardiac MDCT. Group 1 was scanned using a standard protocol with 120 kV and 150 mAseff. Groups 2–4 were scanned using an attenuation-based dose-adaptation template (CARE Dose) with different effective reference mAs settings (150, 180, 210 mAseff). Body-mass index (BMI) and CT-dose index values were calculated for each patient. Image noise and subjective image quality were assessed. Regression analysis was performed, and the variation coefficient of image noise was determined. Compared to the standard scan protocol a dose reduction of 31.1% for group 2 and 20.1% for group 3 was observed. Measurement variation of image noise was smaller for the attenuation-based dose adaptation protocols (group 2–4) (16.2–17.1%) compared to the standard scan protocol (32.3%). Regression analysis of groups 2–4 showed better correlation with improved dose usage based on BMI (all P ≤ 0.001). Median image quality was “excellent” in groups 2–4 and “good” in group 1. Automated attenuation-based tube current adaptation in coronary calcium scoring is technically feasible, can decrease patient dose, and reduces variation in image noise as a sign of improved dose usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9a–d

Similar content being viewed by others

References

  1. Frink RJ, Achor RW, Brown AL Jr, Kincaid OW, Brandenburg RO (1970) Significance of calcification of the coronary arteries. Am J Cardiol 26:241–247

    Article  PubMed  CAS  Google Scholar 

  2. Heussel CP, Voigtlaender T, Kauczor H, Braun M, Meyer J, Thelen M (1998) Detection of coronary artery calcifications predicting coronary heart disease: comparison of fluoroscopy and spiral CT. Eur Radiol 8:1016–1024

    Article  PubMed  CAS  Google Scholar 

  3. Rumberger JA, Sheedy PF, Breen JF, Schwartz RS (1997) Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 29:1542–1548

    Article  PubMed  CAS  Google Scholar 

  4. Guerci AD, Spadaro LA, Goodman KJ et al (1998) Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease. J Am Coll Cardiol 32:673–679

    Article  PubMed  CAS  Google Scholar 

  5. Janssen CH, Kuijpers D, Vliegenthart R, Overbosch J, van Dijkman PR, Zijlstra F, Oudkerk M (2005) Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging. Eur Radiol 15:1128–1134

    Article  PubMed  Google Scholar 

  6. Becker CR, Majeed A, Crispin A et al (2005) CT measurement of coronary calcium mass: impact on global cardiac risk assessment. Eur Radiol 15:96–101

    Article  PubMed  Google Scholar 

  7. Rumberger JA, Brundage BH, Rader DJ, Kondos G (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74:243–252

    Article  PubMed  CAS  Google Scholar 

  8. Becker CR, Jakobs TF, Aydemir S et al (2000) Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. Am J Roentgenol 174:543–547

    CAS  Google Scholar 

  9. Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 176:1295–1298

    CAS  Google Scholar 

  10. Carr JJ, Crouse JR 3rd, Goff DC Jr, D’Agostino RB Jr, Peterson NP, Burke GL (2000) Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. Am J Roentgenol 174:915–921

    CAS  Google Scholar 

  11. Kopp AF, Ohnesorge B, Becker C et al (2002) Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 225:113–119

    Article  PubMed  CAS  Google Scholar 

  12. Horiguchi J, Nakanishi T, Ito K (2001) Quantification of coronary artery calcium using multidetector CT and a retrospective ECG-gating reconstruction algorithm. Am J Roentgenol 177:1429–1435

    CAS  Google Scholar 

  13. Horiguchi J, Shen Y, Akiyama Y, Hirai N, Sasaki K, Ishifuro M, Ito K (2006) Electron beam CT versus 16-slice spiral CT: how accurately can we measure coronary artery calcium volume? Eur Radiol 16:374–380

    Article  PubMed  Google Scholar 

  14. Nasir K, Budoff MJ, Post WS, Fishman EK, Mahesh M, Lima JA, Blumenthal RS (2003) Electron beam CT versus helical CT scans for assessing coronary calcification: current utility and future directions. Am Heart J 146:969–977

    Article  PubMed  Google Scholar 

  15. Daniell AL, Wong ND, Friedman JD et al (2005) Concordance of coronary artery calcium estimates between MDCT and electron beam tomography. Am J Roentgenol 185:1542–1545

    Article  Google Scholar 

  16. Mahnken AH, Muhlenbruch G, Koos R et al (2006) Influence of a small field-of-view size on the detection of coronary artery calcifications with MSCT: in vitro and in vivo study. Eur Radiol 16:358–364

    Article  PubMed  Google Scholar 

  17. van Ooijen PM, Vliegenthart R, Witteman JC, Oudkerk M (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110

    Article  PubMed  Google Scholar 

  18. Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152

    Article  PubMed  Google Scholar 

  19. Trabold T, Buchgeister M, Kuttner A et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 175:1051–1055

    PubMed  CAS  Google Scholar 

  20. Cohnen M, Poll L, Puttmann C, Ewen K, Modder U (2001) Radiation exposure in multi-slice CT of the heart. Rofo 173:295–299

    PubMed  CAS  Google Scholar 

  21. Hohl C, Mahnken AH, Klotz E et al (2005) Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield. Am J Roentgenol 184:128–130

    Google Scholar 

  22. Wildberger JE, Mahnken AH, Schmitz-Rode T et al (2001) Individually adapted examination protocols for reduction of radiation exposure in chest CT. Invest Radiol 36:604–611

    Article  PubMed  CAS  Google Scholar 

  23. Das M, Mahnken AH, Muhlenbruch G et al (2005) Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. Am J Roentgenol 184:1437–1443

    Google Scholar 

  24. Mahnken AH, Wildberger JE, Simon J et al (2003) Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. Am J Roentgenol 181:533–538

    CAS  Google Scholar 

  25. Jakobs TF, Wintersperger BJ, Herzog P et al (2003) Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13:1923–1930

    Article  PubMed  Google Scholar 

  26. Hohl C, Muhlenbruch G, Wildberger JE et al (2006) Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol 16(8):1841–1846

    Article  PubMed  CAS  Google Scholar 

  27. Greess H, Lutze J, Nomayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999

    Article  PubMed  CAS  Google Scholar 

  28. Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–308

    Article  PubMed  Google Scholar 

  29. Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223

    Article  PubMed  Google Scholar 

  30. Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. Am J Roentgenol 181:331–334

    Google Scholar 

  31. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  PubMed  CAS  Google Scholar 

  32. Stamm G, Nagel HD (2002) CT-expo-a novel program for dose evaluation in CT. Rofo 174:1570–1576

    PubMed  CAS  Google Scholar 

  33. Hidajat N, Wolf M, Nunnemann A et al (2001) Survey of conventional and spiral CT doses. Radiology 218:395–401

    PubMed  CAS  Google Scholar 

  34. Commision of the European Community (1998) Quality criteria for CT. Working document EUR 16262. European Comission, Luxembourg

    Google Scholar 

  35. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  36. Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13:2560–2566

    Article  PubMed  CAS  Google Scholar 

  37. Ketteler M, Bongartz P, Westenfeld R et al (2003) Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361:827–833

    Article  PubMed  CAS  Google Scholar 

  38. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  39. Anonymous (2004) Computertomographie des Herzens: Aktuelle Leitlinien. Fortschr Röntgenstr 176:632–637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mühlenbruch.

Additional information

The study was supported by a START grant from the University Hospital of Aachen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlenbruch, G., Hohl, C., Das, M. et al. Evaluation of automated attenuation-based tube current adaptation for coronary calcium scoring in MDCT in a cohort of 262 patients. Eur Radiol 17, 1850–1857 (2007). https://doi.org/10.1007/s00330-006-0543-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0543-4

Keywords

Navigation