Skip to main content
Log in

Influence of a small field-of-view size on the detection of coronary artery calcifications with MSCT: in vitro and in vivo study

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study is to asses the impact of small field-of-view (FOV) sizes on the detection of coronary artery calcifications using multislice-spiral computed tomography (MSCT). First, a static chest phantom containing calcium inserts was scanned 10 times using a standardized scan protocol. Secondly, 50 patients (28 male, 63.6±10.6 years) underwent cardiac MSCT using the same protocol. Images were reconstructed with three different FOV sizes (180×180, 220×220, 380×380 mm2). Coronary calcium scoring and risk stratification were performed for each image series. In the phantom study, the Agatston score calculated with a FOV size of 180×180 mm2 was 657.80±20.05. At a FOV of 220×220 mm2 and 380×380 mm2, the corresponding values were 657.04±21.36 and 655.04±20.74, respectively. The corresponding values in the patient study were 541.65±869.87, 541.91±872.57 and 536.61±867.81. No statistically significant differences in the calcium score were found comparing different FOV sizes. Significantly more lesions (p=0.00149) were detected in the patient study. Comparing the different FOV sizes of 180×180 mm2 and 220×220 mm2 (380×380 mm2), four (six) patients had to be assigned to different risk groups. The use of small FOV sizes resulted in an improved detection of coronary calcifications influencing the risk stratification for further cardiac events in MSCT coronary calcium scoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoffmann U, Derfler K, Haas M, Stadler A, Brady TJ, Kostner K (2003) Effects of combined low-density lipoprotein apheresis and aggressive statin therapy on coronary calcified plaque as measured by computed tomography. Am J Cardiol 91:461–464

    Article  PubMed  Google Scholar 

  2. Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R, Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel WG (2002) Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106:1077–1082

    PubMed  Google Scholar 

  3. Carr JJ, Crouse JR, Goff DC, D’Agostino RB, Peterson NP, Burke GL (2000) Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron-beam CT. Am J Roentgenol 174:915–921

    Google Scholar 

  4. Becker CR, Kleffel T, Crispin A, Knez A, Young J, Schoepf UJ, Haberl R, Reiser MF (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 176:1295–1298

    Google Scholar 

  5. Knez A, Becker C, Becker A, Leber A, White C, Reiser M, Steinbeck G (2002) Determination of coronary calcium with multi-slice spiral computed tomography: a comparative study with electron-beam CT. Int J Cardiovasc Imaging 18:295–303

    Article  PubMed  Google Scholar 

  6. Thompson BH, Stanford W (2004) Imaging of coronary calcification by computed tomography. J Magn Reson Imaging 19:720–733

    Article  PubMed  Google Scholar 

  7. Hong C, Bae KT, Pilgram TK, Suh J, Bradley D (2002) Coronary artery calcium measurement with multi-detector row CT: in vitro assessment of effect of radiation dose. Radiology 225:901–906

    PubMed  Google Scholar 

  8. Mahnken AH, Wildberger JE, Sinha AM, Flohr T, Truong HT, Krombach GA, Gunther RW (2002) Variation of the coronary calcium score depending on image reconstruction interval and scoring algorithm. Invest Radiol 37:496–502

    Article  PubMed  Google Scholar 

  9. Ulzheimer S, Kalender WA (2003) Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 13:484–497

    PubMed  Google Scholar 

  10. Mao S, Child J, Carson S, Liu SC, Oudiz RJ, Budoff MJ (2003) Sensitivity to detect small coronary artery calcium lesions with varying slice thickness using electron beam tomography. Invest Radiol 38:183–187

    Article  PubMed  Google Scholar 

  11. van Ooijen PM, Vliegenthart R, Witteman JC, Oudkerk M (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110

    Article  PubMed  Google Scholar 

  12. Kaufman L, Mineyev M, Carlson J,Goldhaber D, Rumberger J (2003) Coronary calcium scoring: modelling, predicting and correcting for the effect of CT scanner spatial resolution on Agatston and volume scores. Phys Med Biol 48:1423–1436

    Article  PubMed  Google Scholar 

  13. Hong C, Pilgram TK, Zhu F, Bae KT (2004) Coronary artery calcification: effect of size of field of view on multi-detector row CT measurements. Radiology 233:281–285

    PubMed  Google Scholar 

  14. Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25:907–923

    Article  PubMed  Google Scholar 

  15. Agatston AS, Janowitz W, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    PubMed  Google Scholar 

  16. Rumberger JA, Brundage BH, Rader D, Kondos G (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74:243–252

    PubMed  Google Scholar 

  17. Leber AW, Knez A, Mukherjee R, White C, Huber A, Becker A, Becker CR, Reiser M, Haberl R, Steinbeck G (2001) Usefulness of calcium scoring using electron beam computed tomography and noninvasive coronary angiography in patients with suspected coronary artery disease. Am J Cardiol 88:219–223

    Article  PubMed  Google Scholar 

  18. Herzog C, Britten M, Balzer JO, Mack MG, Zangos S, Ackermann H, Schaechinger V, Schaller S, Flohr T, Vogl TJ (2004) Multidetector-row cardiac CT: diagnostic value of calcium scoring and CT coronary angiography in patients with symptomatic, but atypical, chest pain. Eur Radiol 14:169–177

    Article  PubMed  Google Scholar 

  19. Detrano R, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C, Georgiou D, Budoff M, Reed J (1996) Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 27:285–290

    Article  PubMed  Google Scholar 

  20. Takahashi N, Bae KT (2003) Quantification of coronary artery calcium with multi-detector row CT: assessing interscan variability with different tube currents—pilot study. Radiology 228:101–106

    PubMed  Google Scholar 

  21. Shemesh J, Koren-Morag N, Apter S, Rozenman J, Kirwan BA, Itzchak Y, Motro M (2004) Accelerated progression of coronary calcification: four-year follow-up in patients with stable coronary artery disease. Radiology 233:201–209

    PubMed  Google Scholar 

  22. Hong C, Pilgram TK, Zhu F, Bae KT (2004) Is coronary artery calcium mass related to Agatston score? Acad Radiol 11:286–292

    Article  PubMed  Google Scholar 

  23. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429

    Article  PubMed  Google Scholar 

  24. Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, Zelinger A, Mahmarian JJ (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    PubMed  Google Scholar 

  25. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT (2001) Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 87:1335–1339

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Mahnken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahnken, A.H., Mühlenbruch, G., Koos, R. et al. Influence of a small field-of-view size on the detection of coronary artery calcifications with MSCT: in vitro and in vivo study. Eur Radiol 16, 358–364 (2006). https://doi.org/10.1007/s00330-005-2881-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2881-z

Keywords

Navigation