Skip to main content
Log in

Macro-elements K, Na, Cl, Mg, and Ca in body tissues of false killer whales (Pseudorca crassidens) from the Southern Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Macro-elements such as potassium (K), sodium (Na), chlorine (Cl), magnesium (Mg), and calcium (Ca) are essential in marine mammals’ nutrition. These elements are involved in physiological processes. Upon consumption, they are assimilated and accumulate in tissues. For the first time, they were detected in lung, spleen, liver, kidney, muscle, uterus, ovary, and testis of 5, and in skin of 12, stranded false killer whales (Pseudorca crassidens) in sub-Antarctic waters of the South Atlantic Ocean. Results showed that testis reached the highest potassium mean concentration, 1.62 (0.25) wt% dry weight (DW) (standard deviation in parentheses), followed by muscle, 1.11 (0.12) wt% DW, and decreasing in skin to 0.351 (0.098) wt% DW. Testis and lung exhibited among the highest sodium concentrations, with 0.96 (0.20) and 0.93 (0.18) wt% DW, respectively. Chlorine concentration was highest in testis, (1.55 wt% DW) followed by uterus (1.26 wt% DW) and kidney [1.13 (0.16) wt% DW]. Magnesium reached higher concentrations in uterus (0.134 wt% DW) and muscle [0.109 (0.054) wt% DW]. Calcium was higher in lung [0.230 (0.05) wt% DW] and kidney (0.149; 0.294 wt% DW). Hepatic levels of K, Na, Cl, and Mg in false killer whales are generally within the range of other studied species, while Ca levels are the highest reported. Macro-element concentration ranges were established for diverse tissues and organs of the false killer whale as the current best available baseline reference values for assessments of general condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker PR (2000) Concentration of chlorinated hydrocarbons and heavy metals in Alaska Arctic marine mammals. Mar Pollut Bull 40(10):819–829

    CAS  Google Scholar 

  • Becker PR, Kӧster BJ, Wise SA, Zeisler R (1993) Biological specimen banking in Arctic research: an Alaska perspective. Sci Total Environ 139(140):69–95

    PubMed  Google Scholar 

  • Becker PR, Mackey EA, Demiralp R, Schantz MM, Kӧster BJ, Wise SA (1997) Concentrations of chlorinated hydrocarbons and trace elements in marine mammal tissues archived in the U.S. National Biomonitoring Specimen Bank. Chemosphere 34(9–10):2067–2098

    CAS  PubMed  Google Scholar 

  • Behrmann G (1996) Calcareous concretions in the skin of toothed whales (Odontoceti). Arch Fish Mar Res 43(2):183–193

    Google Scholar 

  • Berta A, Sumich JL, Kovacs KM (2006) Marine mammals evolutionary biology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Braconnier P, Loncle N, Dos Santos Lourenco J, Guérin H, Burnier M, Pruijm M (2018) Sodium concentration of sweat correlates with dietary sodium intake. J Hypertension 36(1):e170

    Google Scholar 

  • Bryan CE, Christopher SJ, Balmer BC, Wells RS (2007) Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: implications for non-invasive monitoring. Sci Total Environ 388:325–342

    CAS  PubMed  Google Scholar 

  • Cáceres-Saez I, Ribeiro Guevara S, Dellabianca N, Goodall RNP, Cappozzo HL (2013) Heavy metals and essential elements in Commerson’s dolphins (Cephalorhynchus c. commmersonii) from the Southwestern South Atlantic Ocean. Environ Monit Assess 185:5375–5386

    PubMed  Google Scholar 

  • Cáceres-Saez I, Goodall RNP, Dellabianca N, Cappozzo L, Ribeiro Guevara S (2015) Commerson’s dolphins (Cephalorhynchus commersonii) skin as a biomonitor of mercury and selenium in Subantartic waters. Chemosphere 138:735–743

    PubMed  Google Scholar 

  • Cáceres-Saez I, Ribeiro Guevara S, Goodall RNP, Dellabianca NA, Cappozzo HL (2017) Elemental concentrations in skin and internal tissues of Commerson’s dolphins (Cephalorhynchus commersonii) from subantarctic waters. Polar Biol 40(2):351–364

    Google Scholar 

  • Carvalho ML, Pereira RA, Brito J (2002) Heavy metals in soft tissues of Tursiops truncatus and Delphinus delphis from West Atlantic Ocean by X-ray spectrometry. Sci Total Environ 292(3):247–254

    CAS  PubMed  Google Scholar 

  • Ciesielski T, Szefer P, Zs B, Kuklik I, Skóra K, Namieśnik J, Fodor P (2006) Interspecific distribution and co-associations of chemical elements in the liver tissue of marine mammals from the Polish Economical Exclusive Zone, Baltic Sea. Environ Intern 32:524–532

    CAS  Google Scholar 

  • Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324

    CAS  PubMed  Google Scholar 

  • Cornell LH, Duffield DS, Joseph BE, Stark B (1988) Hematology and serum chemistry values in the beluga (Delphinapterus leucas). J Wildl Dis 24(2):220–224

    CAS  PubMed  Google Scholar 

  • Dalinka MK, Melchior EL (1980) Soft tissue calcifications in systemic disease. Bull N Y Acad Med 56(6):539–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denda M, Tomitaka A, Akamatsu H, Matsunaga K (2003) Altered distribution of calcium in facial epidermis of aged adults. J Investig Dermatol 121:1557–1558

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). World Health Organization (2001) Human vitamin and mineral requirements report of a joint FAO/WHO expert consultation. FAO, Bangkok

    Google Scholar 

  • Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissue of the Atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe Islands. Comp Biochem and Physiol Part C Toxicol Pharmacol 130(3):389–395

    CAS  Google Scholar 

  • Gaskin DE (1986) Kidney and water metabolism. In: Bryden MM, Harrison R (eds) Research on dolphins. Clarendon Press, Oxford, pp 129–148

    Google Scholar 

  • Geracy JR, Lounsbury VJ (2005) Marine mammals ashore: a field guide for strandings. National Aquarium in Baltimore, Baltimore

    Google Scholar 

  • Griesel S, Mundry R, Kakuschke A, Fonfara S, Siebert U, Prange A (2006) Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis. Spectrochim Acta Part B Atom Spectrosc 61:1158–1165

    Google Scholar 

  • Griesel S, Kakuschke A, Siebert U, Prange A (2008) Trace elements concentrations in blood of harbor seal (Phoca vitulina) from the Wadden Sea. Sci the Total Environ 392:313–323

    CAS  Google Scholar 

  • Haro D, Aguayo-Lobo A, Blank O, Cifuentes C, Dougnac C, Arredondo C, Pardo C, Cáceres-Saez I (2015) Nuevo varamiento masivo de orca falsa, Pseudorca crassidens, en el Estrecho de Magallanes, Chile. Rev Biol Mar Oceanog 50:149–155

    Google Scholar 

  • Haro D, Riccialdelli L, Blank O, Matus R, Sabat P (2019) Estimating the isotopic niche of males and females of false killer whales (Pseudorca crassidens) from Magellan Strait, Chile. Mar Mamm Sci 35(3):1070–1082

    Google Scholar 

  • Hepler PK (1994) The role of calcium in cell division. Cell Calcium 16(4):322–330

    CAS  PubMed  Google Scholar 

  • Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(1):i3–i14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakuschke A, Griesel S, Fonfara S, Rosenberger T, Prange A (2009) Concentrations of selected essential and non-essential elements in blood of harbor seal (Phoca vitulina) pups of the German North Sea. Biol Trace Elem Res 127:28–36

    CAS  PubMed  Google Scholar 

  • Kasperczyk A, Dobrakowski M, Horak S, Zalejska-Fiolka J, Birkner E (2015) The influence of macro and trace elements on sperm quality. J Trace Elem Med Biol 30:153–159

    CAS  PubMed  Google Scholar 

  • Lee SE, Lee SH (2018) Skin barrier and calcium. Annals of Dermatol 30(3):265–275

    CAS  Google Scholar 

  • Mackey EA, Demiralp R, Becker PR, Greenberg RR, Koster BJ, Wise SA (1995) Trace element concentrations in cetacean liver tissues archived in the National Marine Mammal Tissue Bank. Sci Total Environ 175(1):25–41

    CAS  PubMed  Google Scholar 

  • Mackey EA, Oflaz RD, Epstein MS, Buehler B, Porter BJ, Rowles T, Wise SA, Becker PR (2003) Elemental composition of liver and kidney tissues of rough-toothed dolphins (Steno bredanensis). Arch Environ Contam Toxicol 44:523–532

    CAS  PubMed  Google Scholar 

  • Malvin RL, Rayner M (1968) Renal function and blood chemistry in Cetacea. Am J Physiol 214(1):187–191

    CAS  PubMed  Google Scholar 

  • Manire CA, Reiber M, Gaspar C, Rhinehart HL, Byrd L, Sweeney J, West KL (2018) Blood chemistry and hematology values in healthy and rehabilitated rough-toothed dolphins (Steno bredanensis). J Wildl Dis 54(1):1–13

    CAS  PubMed  Google Scholar 

  • Martino J, Wise SS, Perkins C, Sironi M, Wise JP Sr. (2013) Metal levels in southern right whales (Eubalaena australis) from Península Valdés. Argentina Environ Anal Toxicol 3:190. https://doi.org/10.4172/2161-0525.1000190

    Article  Google Scholar 

  • Mertz W (1981) The essential trace elements. Science 213(4514):1332–1338

    CAS  PubMed  Google Scholar 

  • Mouton M, Botha A, Thornton M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2015) Elemental distribution patterns in the skins of false killer whales (Pseudorca crassidens) from a mass stranding in South Africa, analyzed using micro-PIXE. Nucl Instrum Methods Phys Res B 363:70–74

    CAS  Google Scholar 

  • O’Hara TM, Hanns C, Bratton G, Taylor R, Wöshner VM (2006) Essential and non-essential elements in eight tissue types from subsistence hunted bowhead whale: nutritional and toxicological assessment. Int J Circumpolar Health 65(3):228–242

    PubMed  Google Scholar 

  • O’Hara TM, Hanns C, Wöshner VM, Zeh J, Bratton G, Taylor R (2008) Essential and non-essential elements in the bowhead whale: epidermis-based predictions of blubber, kidney, liver and muscle tissue concentrations. J Cetacean Res Manag 10:107–117

    Google Scholar 

  • Ortíz RM (2001) Osmoregulation in marine mammals. J Experim Biol 204:1831–1844

    Google Scholar 

  • Rastogi S (2001) Essentials of animal physiology, 3rd edn. New Age International Publishers, New Delhi

    Google Scholar 

  • Rizzo A, Arcagni M, Arribére MA, Bubach D, Ribeiro Guevara S (2011) Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Chemosphere 84:70–79

    CAS  PubMed  Google Scholar 

  • Santarpia L, Koch CA, Sarlis NJ (2010) Hypercalcemia in cancer patients: pathobiology and management. Horm Metab Res 42(3):153–164

    CAS  PubMed  Google Scholar 

  • Schwacke LH, Hall AJ, Townsend FI, Wells RS, Hansen LJ, Hohn AA, Bossart GD, Fair PA, Rowles TK (2009) Hematologic and serum biochemical reference intervals for free-ranging common bottlenose dolphins (Tursiops truncatus) and variation in the distributions of clinicopathologic values related to geographic sampling site. Am J Vet Res 70:973–985

    CAS  PubMed  Google Scholar 

  • Schwalfenberg GK, Genuis SJ (2017) The importance of magnesium in clinical healthcare. Hindawi Sci. https://doi.org/10.1155/2017/4179326

    Article  Google Scholar 

  • Selvarajah V, Connolly K, McEniery C, Wilkinson I (2018) Skin sodium and hypertension: a paradigm shift? Curr Hypertens Rep. https://doi.org/10.1007/s11906-018-0892-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Skandhan KP, Mazumdar BN (1981) Correlation of sodium and potassium in human seminal plasma with fertilizing capacity of normal, and infertile subjects. Andrologia 13(2):147–154

    CAS  PubMed  Google Scholar 

  • Sun X, Yu RQ, Zhang M, Zhang XY, Chen X, Xiao YS, Ding YL, Wu YP (2017) Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis). Sci Total Environ 605:238–245

    PubMed  Google Scholar 

  • Terry J (1994) The major electrolytes: sodium, potassium, and chloride. J Intravenous Nursery 17(5):240–247

    CAS  Google Scholar 

  • Thier SO (1986) Potassium physiology. Am J Med 80(4A):3–7

    CAS  PubMed  Google Scholar 

  • Trites A, Donnelly C (2003) The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal Rev 33:3–28

    Google Scholar 

  • Willard M (2008) Therapeutic approach to chronic electrolyte disorders. Vet Cli Small Anim 38:535–541

    Google Scholar 

  • Wise SA, Koster BJ (1995) Considerations in the design of an environmental specimen bank: experiences of the National Biomonitoring Specimen Bank Program. Environ Health Perspect 103:61–67

    PubMed  PubMed Central  Google Scholar 

  • Wise SA, Zeisler R (1984) The pilot environmental specimen bank program. Environ Sci Technol 18:302A-307A

    CAS  Google Scholar 

  • World Health Organization (WHO), International Atomic Energy Agency & Food and Agriculture Organization of the United Nations (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Wöshner VW, O’Hara TM, Bratton GR, Suydam RS, Beasley VR (2001) Concentrations and interactions of selected essential and non-essential elements in bowhead and beluga whales of Arctic Alaska. J Wildl Dis 37(4):693–710

    PubMed  Google Scholar 

  • Zeisler R, Demiralp R, Koster BJ, Becker PR, Burow M, Ostapczuk P, Wise S (1993) Determination of inorganic constituents in marine mammal tissues. Sci Total Environ 139–140:365–386

    PubMed  Google Scholar 

  • Zhang X, Lin W, Yu R-Q, Sun X, Ding Y, Chen H, Chen X, Wu Y (2017) Tissue partition and risk assessments of trace elements in Indo-Pacific Finless Porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast, China. Chemosphere 185:1197–1207

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the volunteers, veterinarians, and marine biologists for their assistance during field necropsies at Susana Cove, Estrecho de Magallanes, Chile. Our appreciation is extended to the officers of Armada de Chile, SERNAPESCA, and Ministerio de Medio Ambiente, Chile. This research was approved by the Secretaría de Gobierno de Ambiente y Desarrollo Sustentable de la Nación, Argentina (license no. 2680428/16). All samples of the species were imported from Punta Arenas, Chile to Buenos Aries, Argentina under CITES no. 16CL000003WS permission. We are grateful to Juan Jose Alava, PhD (Faculty of Science, The University of British Columbia, Canada) for language revision and other recommendations. Special thanks to Prof. Maria del Carmen Ferreiro for English editing of this manuscript. We thank anonymous reviewers, Dulcinea Groff, PhD, and the responsible editor, who provided helpful comments for the refinement of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ICS and SRG: investigation, conceptualization, and study design; ICS, DHD, OB, CD, and CA: methodology in the field, cetacean necropsies, and sample collection; SRG, OB and AGL: laboratory and logistical resources. ICS and DHD: sample conditioning and processing in the laboratory; SRG: analytical method conduction; ICS and SRG: data processing and writing original draft; ICS, DHD, OB, CD, CA, AAL, HLC, and SRG: visualization, writing review, and editing the manuscript.

Corresponding author

Correspondence to Iris Cáceres-Saez.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Informed consent

All the co-authors have seen the manuscript and agree with it in its current form.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cáceres-Saez, I., Haro, D., Blank, O. et al. Macro-elements K, Na, Cl, Mg, and Ca in body tissues of false killer whales (Pseudorca crassidens) from the Southern Ocean. Polar Biol 45, 537–548 (2022). https://doi.org/10.1007/s00300-022-03012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-022-03012-9

Keywords

Navigation