Skip to main content
Log in

Diversity, distribution, and xerophilic tolerance of cultivable fungi associated with the Antarctic angiosperms

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We characterized the diversity, distribution, systematic colonization, and xerophilic capabilities of fungi associated with the Antarctic angiosperms Colobanthus quitensis and Deschampsia antarctica collected at different sites of the South Shetlands Islands, Antarctic Peninsula. A total of 684 fungal isolates were obtained and identified into 67 taxa from 32 genera. The highest fungal diversity and richness were obtained from the rhizosphere, roots, and leaves, in order, and only 11 taxa shared between both plants. Penicillium and Pseudogymnoascus were the dominant fungal genera. However, the rarefaction curves for plant fungal assemblages did not reach a plateau, suggesting that these Antarctic plants may host more fungi in their tissues and rhizospheres. A total of 460 isolates grew at water activity (aw) = 0.95, 200 at 0.90, 110 at 0.81, and 47 at 0.66. Antarctomyces, Cladosporium, Mortierella, Leptosphaeria, Penicillium, Pseudogymnoascus, and Thelebolus taxa grew at aw = 0.81 and 0.66 and considered highly xerophilic. In addition, specific isolates of Penicillium and Thelebolus exhibited the highest mycelial growth at aw = 0.66. Our results show that the internal tissues and rhizosphere of Antarctic angiosperms host rich and diverse fungal communities dominated by cold-adapted and endemic taxa, which seem to coexist as symbionts and decomposer fungi. In addition, specific fungi are able to colonize different parts of the plant, suggesting a high ecological relationship with their hosts. Finally, different fungi living in the rhizosphere displayed remarkable xerophilic tolerance, representing promising candidates for further biotechnological studies, including identification of genes for applications in industry and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves IM, Gonçalves VN, Oliveira FS et al (2019) The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles 23:327–336

    Article  PubMed  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) Jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293

    Article  Google Scholar 

  • Bovio E, Garzoli L, Poli A et al (2018) The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 1:141–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Article  Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB et al (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107

    Article  Google Scholar 

  • Carvalho CR, Santiago IF, Coelho LC et al (2019) Fungi associated with plants and lichens of Antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity ecology and biotechnological applications. Springer, Cham, Switzerland, pp 165–200

    Chapter  Google Scholar 

  • Chamekh R, Deniel F, Donot C et al (2019) Isolation, identification and enzymatic activity of halotolerant and halophilic fungi from the Great Sebkha of Oran in Northwestern of Algeria. Mycobiology 47:230–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G et al (2009) Antarctic climate change and the environment. Sustain Sci 3:9–22

    Google Scholar 

  • Convey P, Chown SL, Clarke A et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Corry JEL (1987) Relationships of water activity to fungal growth. In: Beuchat LR (ed) Food and beverage mycology. Van Nostrand Reinhold, New York, pp 51–99

  • Crous PW, Gams W, Stalpers JA et al (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269

    Article  PubMed  CAS  Google Scholar 

  • de Menezes GCA et al (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376

  • Ebach M, Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186

    Article  Google Scholar 

  • Eroshin V, Dedyukhina E (2002) Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens. World J Microbiol Biotechnol 18:165–167

    Article  CAS  Google Scholar 

  • Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of Mac. Robertson and Enderby Lands, Antarctica. Polar Biol 4:81–88

    Article  Google Scholar 

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  • Gomes EC, Godinho VM, Silva DA et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves VN, Cantrell CL, Wedge DE et al (2015) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18:232–245

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves VN, Oliveira FS, Carvalho C et al (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860

    Article  PubMed  Google Scholar 

  • Gulis V, Baschien C, Marvanova L (2012) Two new Tricladium species from streams in Alaska. Mycologia 104:1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hereme R, Morales-Navarro S, Ballesteros G et al (2020) Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica. Front Microbiol 11:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kobayasi Y, Hiratsuka N, Korf RP et al (1967) Mycological studies of the Alaskan Arctic. Annu Rep Inst Ferment Osaka 3:1–138

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 87–110

    Chapter  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  CAS  PubMed  Google Scholar 

  • Lieckfeldt E, Meyer W, Borner T (1993) Rapid identification and differentiation of yeast by DNA and PCR fingerprinting. J Basic Microbiol 33:413–426

    Article  CAS  PubMed  Google Scholar 

  • Lorch JM, Meteyer CU, Behr JM et al (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  CAS  PubMed  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Article  Google Scholar 

  • Melo IS, Santos SN, Rosa LH et al (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    Article  CAS  PubMed  Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Article  Google Scholar 

  • Montemartini A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358

    Google Scholar 

  • Pearce DA, Wilson WH (2003) Viruses in Antarctic ecosystems. Antarct Sci 15:319–331

    Article  Google Scholar 

  • Pettersson OV, Leong SL (2001) Fungal xerophiles (Osmophiles). In: eLS (ed) https://doi.org/10.1002/9780470015902.a0000376.pub2

  • Renker C, Zobel M, Öpik M et al (2004) Structure, dynamics, and restoration of plant communities: do arbuscular mycorrhizae matter? In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology—bridging the gap between theory and practice. Island Press, Washington, pp 189–229

    Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Vieira MLA, Santiago IF et al (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL et al (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity ecology and biotechnological applications. Springer, Cham, pp 1–18

    Chapter  Google Scholar 

  • Rosa LH, Sousa JRP, de Menezes GCA et al (2020) Opportunistic fungi present in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Article  Google Scholar 

  • Santiago IF, Alves TM, Rabello A et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  PubMed  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Santiago IF, Rosa CA, Rosa LH (2017) Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 40:177–183

    Article  Google Scholar 

  • Sazanova KV, Senik SV, Kirtsideli IY, Shavarda AL (2019) Metabolomic profiling and lipid composition of Arctic and Antarctic strains of Micromycetes Geomyces pannorum and Thelebolus microsporus grown at different temperatures. Microbiology 88:282–291

    Article  CAS  Google Scholar 

  • Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382

    Article  CAS  Google Scholar 

  • Teixeira LCRS, Yeargeau E, Balieiro FC et al (2013) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. PLoS One 8:e66109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi S, Casado B, Gerdol R (2020) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Article  Google Scholar 

  • Upson R, Newsham KK, Bridge PD et al (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196

    Article  Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF (2018) Psychrotolerant microfungi associated with deer mice (Peromyscus maniculatus) in a White-nose Syndrome positive bat hibernaculum in eastern Canada. Can Field Nat 131:238–245

    Article  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zucconi L, Selbmann L, Buzzini P et al (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from CNPq PROANTAR 442258/2018-6, INCT Criosfera II, CAPES (88887.136384/2017-00 and 88887.314457/2019-00), CNPq, FAPEMIG, and FNDCT. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. In addition, we acknowledge Dr. Virginia de Garcia and the anonymous referees of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LCC and LHR conceived the study. LCC and CRC performed fungi isolation. LCC, CRC, LHR and CAR identified the fungi. LCC performed the xerophilic experiments. LCC, CRC, CAR and LHR analyzed the results and wrote the manuscript. All authors read and approved of the final manuscript.

Corresponding author

Correspondence to Luiz H. Rosa.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 KB)

Supplementary file2 (DOCX 1612 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, L.d.C., de Carvalho, C.R., Rosa, C.A. et al. Diversity, distribution, and xerophilic tolerance of cultivable fungi associated with the Antarctic angiosperms. Polar Biol 44, 379–388 (2021). https://doi.org/10.1007/s00300-021-02799-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02799-3

Keywords

Navigation