Skip to main content

Advertisement

Log in

Fauna associated with morphologically distinct macroalgae from Admiralty Bay, King George Island (Antarctica)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

There are important gaps to understand the composition of the fauna associated with macroalgae, such as, how distinct algal morphology and environmental features, like turbulence or circulation patterns, may affect the distribution of them. In this study, macroalgae and associated fauna samples were undertaken between 4 and 12-m depth at three sites within the Admiralty Bay, King George Island, during the austral summer of 2000/2001. Previous physical oceanography data from the bay showed that each of these sites featured different circulation regimes. Differences and similarities in composition and density of the fauna associated with five species of macroalgae with different morphologies were analyzed: foliose (Monostroma hariotii and Palmaria decipiens); mixed (Myriogramme mangini); and branched (Desmarestia menziesii and Phaeurus antarcticus). Results showed differences in density, dominance of taxa, and richness among taxonomic groups of the associated fauna were related to algal morphology and circulation patterns. The dominance of epifaunal groups among macroalgae (e.g., D. menziesii, M. hariotii, and M. mangini) showed an adaptive response to different water flow settings within the bay, particularly in the community under the most intense flow. Further studies on associated fauna, should consider other environmental physical features and take our study like baseline to understand how major processes (e.g., climate change, seawater properties and circulation) may affect the communities, especially in more vulnerable shallow water zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghmich A, Taboada S, Toll L, Ballesteros M (2016) First assessment of the rocky intertidal communities of Fildes Bay, King George Island (South Shetland Islands, Antarctica). Polar Biol 39:189–198. https://doi.org/10.1007/s00300-015-1814-9

    Article  Google Scholar 

  • Amsler CD, Rowley RJ, Laur DR et al (1995) Vertical distribution of Antarctic peninsular macroalgae: cover, biomass and species composition. Phycologia 34:424–430. https://doi.org/10.2216/i0031-8884-34-5-424.1

    Article  Google Scholar 

  • Amsler C, Iken K, McClintock J et al (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159. https://doi.org/10.3354/meps294141

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10. https://doi.org/10.1111/jpy.12137

    Article  PubMed  Google Scholar 

  • Amsler MO, Huang YM, Engl W et al (2015) Abundance and diversity of gastropods associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 38:1171–1181. https://doi.org/10.1007/s00300-015-1681-4

    Article  Google Scholar 

  • Anisimov O, Vaughan D, Callaghan T et al (2007) Polar regions (Arctic and Antarctic). In: Parry M, Canziani O, Palutikof J et al (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assesment Report of the Intergovemmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011) Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. Mar Biol 158:1879–1885. https://doi.org/10.1007/s00227-011-1700-0

    Article  Google Scholar 

  • Ayala Y, Martín A (2003) Relaciones entre la comunidad de anfípodos y las macroalgas a las que están asociados, en una plataforma rocosa del litoral central de Venezuela. Boletín Inst Español Oceanogr 19:171–182

    Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B Biol Sci 362:11–38. https://doi.org/10.1098/rstb.2006.1951

    Article  Google Scholar 

  • Bell S, Coen L (1982) Investigations on epibenthic meiofauna. II. Influence of microhabitat and macroalgae on abundance of small invertebrate on Diapatra cuprea (Bose) (Polychaeta: Onuphidae) tube-caps in Virginia. J Exp Mar Bio Ecol 61:175–188

    Article  Google Scholar 

  • Brandt A, Gooday AJ, Brandão SN et al (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311. https://doi.org/10.1038/nature05827

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Gossmann H (2002) Glacial changes in the Areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. Geoecology Antarct Ice-Free Coast Landscapes 154:75–89. https://doi.org/10.1007/978-3-642-56318-8_6

    Article  CAS  Google Scholar 

  • Cacabelos E, Olabarria C, Incera M, Troncoso JS (2010) Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar Coast Shelf Sci 89:43–52. https://doi.org/10.1016/j.ecss.2010.05.012

    Article  Google Scholar 

  • Campos LS, Barboza CAM, Bassoi M et al (2013) Environmental processes, biodiversity and changes in Admiralty Bay, King George Island, Antarctica. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments—The impact of global change on biodiversity series. “From Pole to Pole”. Springer, Berlin, pp 127–156

    Google Scholar 

  • Chemello R, Milazzo M (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol 140:981–990. https://doi.org/10.1007/s00227-002-0777-x

    Article  Google Scholar 

  • Christie H, Norderhaug K, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:231–243. https://doi.org/10.3354/meps08351

    Article  Google Scholar 

  • Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • D’Antonio C (1985) Epiphytes on the rocky intertidal red alga RhodomelaLarix (Turner) C. Agardh: negative effects on the host and food for herbivores? J Exp Mar Bio Ecol 86:197–218. https://doi.org/10.1016/0022-0981(85)90103-0

    Article  Google Scholar 

  • Dhargalkar VK, Burton HR, Kirkwood JM (1988) Animal associations with the dominant species of shallow water macrophytes along the coastline of the Vestfold Hills, Antarctica. Hydrobiologia 165:141–150. https://doi.org/10.1007/BF00025581

    Article  Google Scholar 

  • Dubiaski-Silva J, Masunari S (1995) Ecologia Populacional dos Amphipoda (Crustacea) dos Fitais de Caiobá, Matinhos, Paraná, Brasil. Rev Bras Zool 12:373–396. https://doi.org/10.1590/S0101-81751995000200015

    Article  Google Scholar 

  • Dunton K, Schell D (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar Ecol Prog Ser 31:57–66. https://doi.org/10.3354/meps031057

    Article  Google Scholar 

  • Edgar GJ, Moore PG (1986) Macroalgae as habitat for motile macrofauna. Monogr Biológicas 4:255–277

    Google Scholar 

  • Fujii MT, Yoneshigue-Valentin Y, Yokoya NS et al (2014) Macroalgas marinhas da Antártica. Editora Cubo, São Carlos, p 93

    Google Scholar 

  • Gillies CL, Stark JS, Johnstone GJ, Smith SDA (2012) Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ13C and δ15N. Estuar Coast Shelf Sci 97:44–57. https://doi.org/10.1016/j.ecss.2011.11.003

    Article  CAS  Google Scholar 

  • Gillies C, Stark J, Johnstone G, Smith S (2013) Establishing a food web model for coastal Antarctic benthic communities: a case study from the Vestfold Hills. Mar Ecol Prog Ser 478:27–41. https://doi.org/10.3354/meps10214

    Article  Google Scholar 

  • Hacker SD, Steneck RS (1990) Habitat architecture and the abundance and body-size-dependent habitat selection of a Phytal Amphipod. Ecology 71:2269–2285

    Article  Google Scholar 

  • Huang YM, McClintock JB, Amsler CD et al (2006) Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. J Exp Mar Biol Ecol 329:55–65. https://doi.org/10.1016/j.jembe.2005.08.013

    Article  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB et al (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430. https://doi.org/10.1007/s00300-007-0303-1

    Article  Google Scholar 

  • Iken K (1999) Feeding ecology of the antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J Exp Mar Biol Ecol 236:133–148

    Article  Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML et al (1997) Grazing by the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarct Sci 9:386–391. https://doi.org/10.1017/S0954102097000497

    Article  Google Scholar 

  • Jażdżewska AM, Siciński J (2017) Assemblages and habitat preferences of soft bottom Antarctic Amphipoda: admiralty Bay case study. Polar Biol 40:1845–1869. https://doi.org/10.1007/s00300-017-2107-2

    Article  Google Scholar 

  • Jażdżewski K, Siciński J (1993) Zoobenthos, 12.1 General remarks. In: Rakusa-Suszczewski S (ed) The maritime antarctic coastal ecosystem of Admiralty Bay. Dept. Antarctic biology, Pol. Acad. Sci., Warsaw, pp 83–95

  • Jażdżewski K, De Broyer C, Pudlarz M, Zielinski D (2001) Seasonal fluctuations of vagile benthos in the uppermost sublittoral of a maritime Antarctic fjord. Polar Biol 24:910–917

    Article  Google Scholar 

  • Jones C, Lawton J, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Lamb IM, Zimmermann MH (1977) Benthic marine algae of Antarctic Peninsula. Biol Antarct seas V Antarct Res Ser 23:130–229

    Article  Google Scholar 

  • Lanna AM, Barboza CAM, Moura RB, Lavrado HP, Dalto AG, Campos LS (2013) Species composition and spatial distribution of echinoderms in the shallow coast of Admiralty Bay, King George Island, Antarctica. Annu Activity Rep Nat Inst Sci Technol Antarct Environ Res 2012:160–169

    Google Scholar 

  • Lastra M, Rodil IF, Sánchez-Mata A et al (2014) Fate and processing of macroalgal wrack subsidies in beaches of Deception Island, Antarctic Peninsula. J Sea Res 88:1–10. https://doi.org/10.1016/j.seares.2013.12.011

    Article  Google Scholar 

  • Leite FPP, Turra A (2003) Temporal variation in Sargassum biomass, Hypnea epiphytism and associated fauna. Brazilian Arch Biol Technol 46:665–671

    Article  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522. https://doi.org/10.1007/s003000100250

    Article  Google Scholar 

  • Liuzzi MG, López Gappa J (2011) Algae as hosts for epifaunal bryozoans: role of functional groups and taxonomic relatedness. J Sea Res 65:28–32. https://doi.org/10.1016/j.seares.2010.06.007

    Article  Google Scholar 

  • Marcías ML, Deregibus D, Saravia LA et al (2017) Life between tides: spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica. Estuar Coast Shelf Sci 187:193–203. https://doi.org/10.1016/j.ecss.2016.12.023

    Article  Google Scholar 

  • Martín A, Miloslavich P, Díaz Y et al (2016) Intertidal benthic communities associated with the macroalgae Iridaea cordata and Adenocystis utricularis in King George Island, Antarctica. Polar Biol 39:207–220. https://doi.org/10.1007/s00300-015-1773-1

    Article  Google Scholar 

  • Martin-Smith KM (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. J Expl Mar Biol Ecol 174:243–260

    Article  Google Scholar 

  • Narchi W, Domaneschi O, Passos FD (2002) Bivalves Antárticos e Subantárticos coletados durante as Expedições Científicas Brasileiras à Antártica I a IX (1982–1991). Rev Bras Zool 19:645–675. https://doi.org/10.1590/S0101-81752002000300003

    Article  Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:16–35

    Google Scholar 

  • Norderhaug KM, Christie H, Rinde E et al (2014) Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests. Mar Ecol Prog Ser 502:295–301. https://doi.org/10.3354/meps10754

    Article  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ et al (2004) Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biol 27:482–494

    Article  Google Scholar 

  • Nyssen F (2005) Role of benthic amphipods in Antarctic trophodynamics: a multidisciplinary study. Université de Liège, Thesis

    Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647. https://doi.org/10.1007/s00300-009-0663-9

    Article  Google Scholar 

  • O’Loughlin PM, Stępień A, Kuźniak M, Van Den Spiegel D (2013) A new genus and four new species of sea cucumbers (Echinodermata) from Admiralty Bay, King George Island. Pol Polar Res 34:67–86

    Article  Google Scholar 

  • Pabis K, Siciński J (2010) Polychaete fauna associated with holdfasts of the large brown alga Himantothallus grandifolius in Admiralty Bay, King George Island, Antarctic. Polar Biol 33:1277–1288. https://doi.org/10.1007/s00300-010-0816-x

    Article  Google Scholar 

  • Pabis K, Sobczyk R (2014) Small-scale spatial variation of soft-bottom polychaete biomass in an Antarctic glacial fjord (Ezcurra Inlet, South Shetlands): comparison of sites at different levels of disturbance. Helgol Mar Res 69:113–121

    Article  Google Scholar 

  • Paiva PC, Seixas VC, Echeverría CA (2015) Variation of a polychaete community in nearshore soft bottoms of Admiralty Bay, Antarctica, along austral winter (1999) and summer (2000/2001). Polar Biol 38:1345–1356. https://doi.org/10.1007/s00300-015-1698-8

    Article  Google Scholar 

  • Peck LS, Brockingtonl S, Vanhove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar Ecol Prog Ser 186:1–8

    Article  Google Scholar 

  • Piera FE (2005) Macrofauna da comunidade fital de cinco espécies de algas da Baía do Almirantado (Ilha Rei George, Antártica), com ênfase para o grupo Amphipoda (Crustacea, Peracarida). Dissertation, University of São Paulo

  • Pruszak Z (1980) Currents circulation in the waters of Admiralty Bay (region of Arctowski Station on King George Island). Pol Polar Res 1:55–74

    Google Scholar 

  • Rakusa-Suszczewski S (1995) The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctica). Polish Polar Res 16:61–70

    Google Scholar 

  • Ranjitham NS, Thirumaran G, Anantharaman P et al (2008) Associated fauna of seaweeds and seagrasses in Vellar Estuary. Am J Bot 1:9–16

    Google Scholar 

  • Robertson AI (1984) Trophic interactions between the fish fauna and macrobenthos of an eelgrass community in Western Port, Victoria. Aquat Bot 18:135–153. https://doi.org/10.1016/0304-3770(84)90084-6

    Article  Google Scholar 

  • Rosenfeld S, Aldea C, Ojeda J et al (2017) Molluscan assemblages associated with Gigartina beds in the strait of Magellan and the South Shetland Islands (Antarctica): a comparison of composition and abundance. Polar Res. https://doi.org/10.1080/17518369.2017.1297915

    Article  Google Scholar 

  • Rossi S, Gili JM, Hughes RG (2000) The effects of exposure to wave action on the distribution and morphology of the epiphytic hydrozoans Clava multicornis and Dynamena pumila. Sci Mar 64:135–140

    Article  Google Scholar 

  • Rossi S, Gili J-M, Garrofé X (2011) Net negative growth detected in a population of Leptogorgia sarmentosa: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol 158:1631–1643. https://doi.org/10.1007/s00227-011-1675-x

    Article  Google Scholar 

  • Sahade R, Lagger C, Momo FR et al (2015) Climate change, glacier retreat and shifts in an Antarctic benthic ecosystem. Sci Adv 1:e1500050. https://doi.org/10.1126/sciadv.1500050

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Jerez P, Barberá-Cebrián C, Ramos-Esplá A (1999) Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: importance of meadow edges. Acta Oecol 20:391–405

    Article  Google Scholar 

  • Segadilha JL, Lavrado HP (2018) Tanaidacea fauna (Peracarida, Crustacea) from the shallow sublittoral zone of Admiralty Bay, King George Island, Antarctica, with new records. Polar Biol 41:589–597

    Article  Google Scholar 

  • Siciński J, Jażdżewski K, De Broyer C et al (2011a) Admiralty Bay Benthos diversity—a census of a complex polar ecosystem. Deep Sea Res Part II Top Stud Oceanogr 58:30–48. https://doi.org/10.1016/j.dsr2.2010.09.005

    Article  Google Scholar 

  • Siciński J, Pabis K, Jażdżewski K et al (2011b) Macrozoobenthos of two Antarctic glacial coves: a comparison with non-disturbed bottom areas. Polar Biol 35:355–367. https://doi.org/10.1007/s00300-011-1081-3

    Article  Google Scholar 

  • Simões JC, Arigony-Neto J, Bremer UF (2004) O uso de mapas antárticos em publicações. Pesq Antart Bras 197:191–197

    Google Scholar 

  • Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar Biol 68:299–319. https://doi.org/10.1007/BF00409596

    Article  Google Scholar 

  • Torres AC, Veiga P, Rubal M, Sousa-Pinto I (2015) The role of annual macroalgal morphology in driving its epifaunal assemblages. J Exp Mar Biol Ecol 464:96–106. https://doi.org/10.1016/j.jembe.2014.12.016

    Article  Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178. https://doi.org/10.1007/s00442-004-1644-x

    Article  PubMed  Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic Seaweeds. ARG Gantner Verlag, Ruggell

    Google Scholar 

  • Yoneshigue-Valentin Y, Silva IB, Fujii MT et al (2013) Marine macroalgal diversity in Admiralty Bay, King George Island, South Shetlands Islands, Antarctica. Annu Activity Rep Nat Inst Sci Technol Antarct Environ Res 2012:140–148

    Google Scholar 

  • Zamzow J, Amsler C, McClintock J, Baker B (2010) Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Mar Ecol Prog Ser 400:155–163. https://doi.org/10.3354/meps08399

    Article  Google Scholar 

  • Zemko K, Pabis K, Siciński J et al (2015) Diversity and abundance of isopod fauna associated with holdfasts of the brown alga Himantothallus grandifolius in Admiralty Bay, Antarctic. Pol Polar Res 36:403–413. https://doi.org/10.1515/popore

    Article  Google Scholar 

  • Zielinski K (1981) Benthic macroalgae of Admiralty Bay (King George Island, South Shetland Islands) and circulation of algal matter between the water and the shore. Pol Polar Res 2:71–94

    Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). Pol Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgements

We thank the members of the XIX Brazilian Antarctic Expedition, PROANTAR, S. Bromberg, and the divers A. Athiê and R. Skowronski. We are grateful to SeCIRM for logistical support. P. Gheller is acknowledged for helping in the sorting of animals, and the statistical analysis. We thank the English-speaking editors of American Journal Experts for the first review of this manuscript. We are thankful for the Polar Biology reviewers. We are especially grateful to Heike Lippert, Margaret O Amsler, David K Barnes and Mattias Cape for their useful comments and suggestions to this manuscript.

Funding

This study was funded by the National Council for Research and Development (CNPq, Portuguese acronym) process 480251/00-2 to T.N.C., and F.E.P received a CNPq fellowship process number 190224/00-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Elias-Piera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

All authors agree to its submission and the corresponding author has been authorized by co-authors. This article has not been published before and is not concurrently being considered for publication elsewhere. This article does not violate any copyright or other personal proprietary right of any person or entity and it contains no abusive, defamatory, obscene, or fraudulent statements, nor any other statements that are unlawful in any way.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias-Piera, F., Rossi, S., Petti, M.A.V. et al. Fauna associated with morphologically distinct macroalgae from Admiralty Bay, King George Island (Antarctica). Polar Biol 43, 1535–1547 (2020). https://doi.org/10.1007/s00300-020-02726-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02726-y

Keywords

Navigation