Polar Biology

, Volume 39, Issue 10, pp 1689–1698 | Cite as

Coastal evolution and sedimentary mobility of Brøgger Peninsula, northwest Spitsbergen

  • Marine BourriquenEmail author
  • Agnès Baltzer
  • Denis Mercier
  • Jérôme Fournier
  • Laurent Pérez
  • Sylvain Haquin
  • Eric Bernard
  • Maria Jensen
Original Paper


Since the end of the Little Ice Age (LIA), Svalbard glaciers have undergone a net retreat in response to changing meteorological conditions. Located between 76°N and 80°N, western Spitsbergen has seen a climatic transition from a glacial to a paraglacial system. On the northern shore of the Brøgger Peninsula (northwest Spitsbergen), the average temperature increased by 3 °C between 1965 and 2015, and cold-based valley glaciers have retreated more than 1 km from their LIA limits. This rapid deglaciation has exposed large areas of glacigenic sediments being easily reworked by runoff. This has led to the formation of extensive glacier-river delta systems and coastal progradation. Post-LIA coastal progradation and formation of new landforms in Kongsfjorden have been controlled predominantly by substantial availability of glacial sediment. A combination of aerial photographic and field data has been employed to estimate the post-LIA evolution of coastal sandur deltas and their submarine parts (named here “prodeltas”). The data set reveals that delta shoreline advance could have reached around 5 m/year. between 1966 and 1990 for the most energetic delta of Austre Lovenbreen, and around 4 m/year between 2011 and 2014 for the most energetic delta of Midtre Lovenbreen. The prodeltas registered a net growth from 2009 to 2012: the biggest, located in the prolongation of deltas of Austre Lovenbreen, measured 1033 m in length in 2009 and 1180 m in length in 2012. This substantial amount of sediment supplied in the fjord has an impact on the fjord ecology, especially on the benthic ecosystem.


Submarine and aerial coastal evolution Paraglacial Sedimentary flux High Arctic Svalbard 



The authors would like to thank IPEV for logistical support during the field work campaigns (mission Spitsbay realised in 2009 and mission Seispitz realised in 2012), Damien Isambert, captain of the sailing boat “Je rêve donc tu vis” and UNIS (logistic support) for the field work campaign (Sonny mission 2011). This fieldwork was carried out within the collaborative framework between the LETG-Nantes-Géolittomer (UMR 6554) laboratory of Nantes University and the Institut National des Sciences et des Techniques de la Mer of Cherbourg.


  1. Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017CrossRefGoogle Scholar
  2. Byrne ML, Dionne JC (2002) Typical aspects of cold region shorelines. In: Hewitt K, Byrne ML, English M, Young G (eds) Landscape in transition. Landform assemblages and transformations in cold regions. Kluwer Academic Publishers, Dordrecht, pp 141–158Google Scholar
  3. Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3072CrossRefGoogle Scholar
  4. Etienne S, Mercier D, Voldoire O (2008) Temporal scales and deglaciation rhythms in a polar glacier margin, Baronbreen, Svalbard. Nor J Geogr 62:102–114CrossRefGoogle Scholar
  5. Etzelmüller B (2000) Quantification of thermo-erosion in pro-glacial areas—examples from Svalbard. Z Geomorphol 3:343–361Google Scholar
  6. Etzelmüller B, Odegard RS, Vatne G, Mysterud RS, Tonning T, Sollid JL (2000) Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Nor J Geogr 54:157–168CrossRefGoogle Scholar
  7. Forbes DL (ed) (2011) State of the Arctic Coast 2010—scientific review and outlook. International Arctic Science Committee, Land–Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthacht 178 pGoogle Scholar
  8. Forbes DL, Syvitski JPM (1994) Paraglacial coasts. In: Carter RWG, Woodroffe CD (eds) Coastal evolution. Late quaternary shoreline morphodynamics. Cambridge University Press, Cambridge, pp 373–424Google Scholar
  9. Forland EJ, Hanssen-Bauer I (2000) Increased precipitation in the Norwegian Arctic: true or false? Clim Change 46:485–509CrossRefGoogle Scholar
  10. French HM (2000) Does Lozinski’s periglacial realm exist today? A discussion relevant to the usage of the term “periglacial”. Permafr Periglac Process 11:35–42CrossRefGoogle Scholar
  11. French HM, Thorn C (2006) The changing nature of periglacial geomorphology. Géomorphol Relief process Environn 3:1–33Google Scholar
  12. Geoffray H (1968) Étude du bilan hydrologique et de l’érosion sur un bassin partiellement englacé, Spitsberg, Baie du Roi, 79° Lat. Nord, thesis, University of Rennes, 68 pGoogle Scholar
  13. Griselin M (1982) Les modalités de l’écoulement liquide et solide sur les marges polaires, thesis, University of Nancy II, 500 pGoogle Scholar
  14. Hagen JO, Melvold K, Pinglot JF, Dowdesweel JA (2003) On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct Antarct Alp Res 35(2):264–270CrossRefGoogle Scholar
  15. Haldorsen S, Heim M (1999) An arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafr Periglac Process 10:137–149CrossRefGoogle Scholar
  16. Hansen S (1999) A photogrammetrical, climate-statistical and geomorphological approach to the post Little Ice Age changes of the Midtre Lovenbreen glacier, Svalbard, Unpublished Masters theses, University of Copenhagen- The University Courses on Svalbard (UNIS)—University of Tromso, 103 pGoogle Scholar
  17. Héquette A (1986) Morpho-sédimentologie et évolution de littoraux meubles en milieu arctique, Péninsule de Brögger, Spitsberg nord-occidental, thesis, University of Brest, 397 pGoogle Scholar
  18. Héquette A, Ruz MH (1990) Sédimentation littorale en bordure de plaines d’épandage fluvio-glaciaires au Spitsberg Nord-occidental. Géog Phys Quat. 44(1):77–88Google Scholar
  19. Holte B, Gulliksen B (1998) Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biol 19:375–382CrossRefGoogle Scholar
  20. Holte B, Dahle S, Gulliksen B, Naes K (1996) Some macrofaunal effects of local pollution and glacier-induced sedimentation, with indicative chemical analyses, in the sediments of two Arctic fjords. Polar Biol 16:549–557CrossRefGoogle Scholar
  21. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lonne OJ, Zajaczkowsk M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor Jozef, Poltermann M, Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden,Svalbard. Polar Res 21(1):167–208CrossRefGoogle Scholar
  22. Humlum O (2002) Modelling late 20th-century precipitation in Nordenskiöld Land, Svalbard, by geomorphic means. Nor Geogr Tidsskr 56:96–103CrossRefGoogle Scholar
  23. IPCC (2007) Climate Change 2007: The physical science basis, Cambridge University Press, IPCC fourth assessment report. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge, UK and New York, NY, USAGoogle Scholar
  24. IPCC (2013) Climate Change 2013: the physical science basis, Cambridge University Press, IPCC fourth assessment report. Stocker TF, Qin D, Plattner G.-K, Tignor M, Allen SK, Boshung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge, UK and New York, NY, USAGoogle Scholar
  25. Joly D (1994) Ambiances climatiques instantanées au Spitsberg, pour une approche méthodique par niveaux d’échelle, thesis, EHESS, Paris, no 529, 404 pGoogle Scholar
  26. Lantuit H, Overduin P, Solomon S, Mercier D (2010) Coastline dynamics in polar systems using remote sensing. In: Maanan M, Robin M (eds) Geomatic solutions for coastal environments. Nova Science Publishers, New York, pp 163–174Google Scholar
  27. Lefauconnier B, Hagen JO, Orbaek JB, Melvold K, Isaksson E (1999) Glacier balance trends in the Kongsfjorden area, western Spitsbergen, Svalbard, in relation to the climate. Polar Res 18:580–596CrossRefGoogle Scholar
  28. Mercier D (2001) Le monde polaire face aux changements climatiques. Presses Universitaires Blaise Pascal, Clermont-Ferrand 278 pGoogle Scholar
  29. Mercier D, Laffly D (2005) Actual paraglacial progradation of the coastal zone in the Kongsfjorden area, western Spitsbergen (Svalbard). Cryospheric Systems, Glaciers and Permafrost. Ed. C. Harris and J. B. Murton. Geol Soc 242:111–117CrossRefGoogle Scholar
  30. Nesje A, Dahl SO (2000) Glaciers and environnemental change. Arnold, London 203 pGoogle Scholar
  31. Overduin PP, Strzelecki MC, Grigoriev MN, Couture N, Lantuit H, St-Hilaire-Gravel D, Günther F, Wetterich S (2014) Coastal changes in the Arctic. In: Martini IP, Wanless HR (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences. Geological Society, London, Special Publication 388: 103–129Google Scholar
  32. Quenet M (2014) Le rôle des eaux sous-terraine dans l’hydrologie d’un bassin-versant glaciaire sous condition de pergélisol continu au Spitsberg (Austre Lovenbreen, 79°N). Thesis, University Paris Sud, 380 pGoogle Scholar
  33. Rachlewicz G, Szczucinski W, Ewertowski M (2007) Post- « Little Ice Age » retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Pol Polar Res 28(3):159–186Google Scholar
  34. Rippin D, Willis I, Arnold N, Hodson A, Moore J, Kohler J, Björnsson H (2003) Changes in geometry and subglacial drainage of Midtre Lovenbreen, Svalbard, determined from digital elevation models. Earth Surf Proc Land 28:273–298CrossRefGoogle Scholar
  35. Roussel E (2005) L’évolution morphologique récente du réseau hydrographique sur les marges des glaciers Lovén, presqu’île de Brögger (Spitsberg, 79 N). Norois 194:85–96CrossRefGoogle Scholar
  36. Strzelecki MC, Long AJ, Lloyd JM (2015a) Post-little ice age development of a high Arctic paraglacial beach complex. Permafr Periglac Process. doi: 10.002/ppp.1879 Google Scholar
  37. Strzelecki MC, Malecki J, Zagorski P (2015a) The influence of recent deglaciation and associated sediment flux on the functioning of polar coastal zone—Northern Petuniabukta, Svalbard. In: Maanan M, Robin M (eds) Sediment fluxes on coastal areas. Coastal Research Library 10, Springer. pp 23–45Google Scholar
  38. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Orbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166CrossRefGoogle Scholar
  39. SWIPA (2011) Snow, Water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere, Arctic monitoring and assessment programme (AMAP) (ed) Oslo, NorwayGoogle Scholar
  40. Zagorski P (2011) Shoreline dynamics of Calypsostranda (NW Wedel Jarlsberg Land, Svalbard) during the last century. Pol Polar Res 32(1):67–99Google Scholar
  41. Zagorski P, Rodzik J, Strzelecki MC (2013) Coastal Geomorphology. In: Zagorski P, Harasimuik M, Rodzik J (eds) The geographical environment of NW part of Wedel Jarlsberg lan (Spitsbergen, Svalbard). University Marie Curie-Slodowska Press 2013, Lublin, pp 2012–247Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marine Bourriquen
    • 1
    Email author
  • Agnès Baltzer
    • 1
  • Denis Mercier
    • 2
  • Jérôme Fournier
    • 3
  • Laurent Pérez
    • 4
  • Sylvain Haquin
    • 4
  • Eric Bernard
    • 5
  • Maria Jensen
    • 6
  1. 1.Laboratory LETG-Nantes-Géolittomer (UMR 6554), Institute of GeographyUniversity of NantesNantesFrance
  2. 2.Laboratory ENeC (UMR 8185)University Paris-SorbonneParisFrance
  3. 3.National Museum of Natural HistoryLaboratory BOREA (UMR 7208)Mont-Saint-AignanFrance
  4. 4.Laboratory M2C (UMR 6143)University of CaenCaenFrance
  5. 5.Laboratory Thema (UMR 6049)University of Franche ComtéBesançonFrance
  6. 6.University Centre in Svalbard (UNIS)LongyearbyenNorway

Personalised recommendations