Skip to main content
Log in

Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Unlike the Arctic flora, with many flowering plant species offering opportunities to study evolutionary processes, the Antarctic flora offers only two. One of them is the Antarctic grass Deschampsia antarctica E. Desv., whose distribution spans from northern Patagonia (ca. 38°S) down to Alamode Island (ca. 68°S), in the west side of the Antarctic Peninsula. While some aspects of Antarctic plants have been extensively studied (e.g., anatomy, physiology, genetics), little is known about the related Patagonian populations. Particularly in cytogenetics, no single study has focused on continental populations and its relationships with the Antarctic plants. The combination of traditional fluorescent in situ hybridization (FISH) with a phylogenetic framework highlights the importance of cytogenetics in plant evolutionary studies, by allowing comparison of chromosome characters in phylogenetically related individuals. Most used characters for this purpose are the chromosome number, karyotype morphology and patterns of repetitive DNA. These were used to compare distant populations of D. antarctica in a phylogenetic framework, to obtain a first view of the cytogenetic structure of the species along its distribution. Patagonian populations have greater variability in the chromosomal and molecular characters, while Antarctic populations are very alike, hinting at a South American origin hypothesis. A polyploid population is reported for the first time, located on Central Patagonia populations, close to the northern limit of distribution range. Cytogenetic characteristics suggest that hybridization processes could have played an important role in the evolution of the genome of D. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  • Albers F (1980) Vergleichende karyologie der Gräser subtriben Aristaveninae und Airinae [Poaceae Aveneae]. Plant Syst Evol 136:137–167

    Article  Google Scholar 

  • Andreev IO, Spiridonova EV, Kyryachenko SS, Parnikoza IY, Maidanyuk DN, Volkov RA, Kozeretskab IA, Kunakh VA (2010) Population-genetic analysis of Deschampsia antarctica from two regions of maritime antarctica. Moscow Univ Biol Sci Bull 65:208–210

    Article  Google Scholar 

  • Arohonka T (1982) Chromosome counts of vascular plants of the island Seili in Nauvo, southwestern Finland. Turun Yliopiston Julkaisuja, Sar A 2. Biol Geogr 3:1–12

    Google Scholar 

  • Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) Onset and role of the Antarctic Circumpolar Current. Deep Sea Res Part 2 Top Stud Oceanogr 54:2388–2398

    Article  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  CAS  PubMed  Google Scholar 

  • Belyayev A, Raskina O (2013) Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. Ann Bot 111:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Cardone S, Sawatani P, Rush P, García AM, Poggio L, Schrauf G (2009) Karyological studies in Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:427–433

    Article  Google Scholar 

  • Chiapella J (2007) A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: support for the recognition of Avenella and Vahlodea. Taxon 56:55–64

    Google Scholar 

  • Chiapella J, Probatova N (2003) The Deschampsia cespitosa complex (Poaceae: Aveneae) with special reference to Russia. Bot J Linn Soc 142:213–228

    Article  Google Scholar 

  • Chiapella J, Zuloaga FO (2010) A Revision of Deschampsia, Avenella, and Vahlodea (Poaceae, Poeae, Airinae) in South America. Ann Mo Bot Gard 97:141–162

    Article  Google Scholar 

  • Chwedorzewska KJ, Giełwanowska I, Szczuka E, Bochenek A (2008) High anatomical and low genetic diversity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Pol Polar Res 29:377–386

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davlianidze MT (1985) Chromosome numbers in the representatives of the flora from Georgia. Bot Zhurnal 70:698–700 (Moscow & Leningrad)

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dvořák J, Appels R (1982) Chromosome and nucleotide sequence differentiation in genomes of polyploid Triticum species. Theor Appl Genet 63:349–360

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelskjøn T (1979) Chromosome numbers in vascular plants from Norway, including Svalbard. Opera Bot 52:1–38

    Google Scholar 

  • García-Suárez R, Alonso-Blanco C, Fernandez-Carvajal M, Fernandez-Prieto J, Roca A, Giraldez R (1997) Diversity and systematics of Deschampsia sensu lato (Poaceae), inferred from karyotypes, protein electrophoresis, total genomic DNA hybridization and chloroplast DNA analysis. Plant Syst Evol 205:99–110

    Article  Google Scholar 

  • Gidekel M, Destefano-Beltran L, García P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7:459–469

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica, and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188

    Article  Google Scholar 

  • Guerra M (1988) Introdução à citogenética geral. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Hagerup O (1932) Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Hereditas 16:19–40

    Article  Google Scholar 

  • Harper JA, Thomas ID, Lovatt JA, Thomas HM (2004) Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Plant Syst Evol 245:163–168

    Article  CAS  Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen W, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedberg O (1986) On the manifestation of vivipary in Deschampsia cespitosa s. lat. Symb Bot Ups 27:183–192

    Google Scholar 

  • Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:13–22

    Article  CAS  Google Scholar 

  • Holderegger R, Stehlik I, Lewis Smith R, Abbott R (2003) Populations of Antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arct Antarc Alp Res 35:214–217

    Article  Google Scholar 

  • Hunziker JH, Stebbins GL (1987) Chromosomal evolution in the Gramineae. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institution Press, Washington, pp 179–188

    Google Scholar 

  • John UP, Polotnianka RM, Sivakumaran KA, Chew O, Mackin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Spangenberg GC (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ 32:336–348

    Article  CAS  PubMed  Google Scholar 

  • Kawano S (1963) Cytogeography and evolution of the Deschampsia cespitosa complex. Can J Bot 41:719–742

    Article  Google Scholar 

  • Komárková V, Poncet S, Poncet J (1985) Two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arct Alp Res 17:401–416

    Article  Google Scholar 

  • Komárková V, Poncet S, Poncet J (1990) Additional and revisited localities of vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. in the Antarctic Peninsula area. Arct Alp Res 22:108–113

    Article  Google Scholar 

  • Książczyk T, Taciak M, Zwierzykowski Z (2010) Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 51:449–460

    Article  PubMed  Google Scholar 

  • Lawrence WE (1945) Some ecotypic relations of Deschampsia cespitosa. Am J Bot 32:298–314

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Lideikytė L, Pašakinskienė I, Lemežienė N, Nekrošas S, Kanapeckas J (2008) FISH assessment of ribosomal DNA sites in the chromosome sets of Lolium, Festuca and Festulolium. Agriculture 95:116–124

    Google Scholar 

  • Löve A, Löve D (1975) IOPB chromosome number reports. Taxon 24:504–507

    Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis. Version 3.03. http://mesquiteproject.org. Accessed 19 June 2015

  • Maluszynska J, Heslop-Harrison J (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  CAS  PubMed  Google Scholar 

  • Montiel P, Smith A, Keiller D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18:229–235

    Article  Google Scholar 

  • Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Br Antarct Surv Bull 23:63–80

    Google Scholar 

  • Mosyakin S, Bezusko L, Mosyakin A (2007) Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Cytol Genet 41:308–316

    Article  Google Scholar 

  • Navrotska DO, Twardovska MO, Andreev IO, Parnikoza IY, Betekhtin AA, Zahrychuk OM, Kunakh VA (2014) New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine islands of the Maritime Antarctic region. Ukr Antarct J 13:185–191

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Parnikoza IY, Maidanuk D, Kozeretska I (2007) Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Migratory Relicts? Cytol Genet 41:226–229

    Article  Google Scholar 

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Article  Google Scholar 

  • Petrovsky VV, Zhukova PG (1981) Chromosome numbers and taxonomy of some plant species of Wrangel Island. Bot Zhurnal 66:380–387 (Moscow & Leningrad)

    Google Scholar 

  • Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? New Phytol 193:261–275

    Article  CAS  PubMed  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. PNAS 101:14818–14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  CAS  PubMed  Google Scholar 

  • Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:439–443

    Article  CAS  PubMed  Google Scholar 

  • Roa F (2011) Análise da distribuição dos sítios de DNA ribossomal 5S e 45S em cariótipos de espécies vegetais. Tese de Doutorado, Programa de Pós-Graduação em Biologia Vegetal Universidade Federal de Pernambuco, Recife

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FH (2000) NTSYS. Numerical taxonomy and multivariate analysis system. Version 2.1. New York

  • Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530

    Article  Google Scholar 

  • Röser M, Winterfeld G, Grebenstein B, Hemleben V (2001) Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 21:198–217

    Article  PubMed  Google Scholar 

  • Rothera S, Davy A (1986) Polyploidy and habitat differentiation in Deschampsia cespitosa. New Phytol 102:449–467

    Article  Google Scholar 

  • Ruhland CT, Day TA (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251

    Article  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297

    Article  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. In: Stahl A, Luciani JM, Vagner-Capodano AM (eds) Chromosomes today 9. Allen and Unwin, London, pp 61–74

    Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Shelukhina OY, Badaeva E, Loskutov I, Pukhal’Sky V (2007) A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. Russ J Genet 43:613–626

    Article  CAS  Google Scholar 

  • Sokolovskaya AP, Probatova NS (1975) Chromosome numbers of some grasses (Poaceae) of the USSR. Bot Zhurnal 60:667–678 (Moscow & Leningrad)

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stebbins GL (1975) The role of polyploid complexes in the evolution of North American grasslands. Taxon 24:91–106

    Article  Google Scholar 

  • Swofford DL (2000) PAUP* Phylogenetic Analysis Using Parsimony (* and Other Methods). Version, 4. Sinauer Associates Inc., Sunderland

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateoka T (1955) Karyotaxonomy in Poaceae III. Further studies of somatic chromosomes. Cytologia 20:296–306

    Article  Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2013) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Plant Biol 15:868–881

    Article  CAS  PubMed  Google Scholar 

  • van de Wouw M, van Dijk P, Huiskes AH (2008) Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). J Biogeogr 35:365–376

    Google Scholar 

  • Vieira RC, Mantovani A (1995) Anatomia foliar de Deschampsia antarctica Desv. (Gramineae). Rev Bras Bot 18:207–220

    Google Scholar 

  • Volkov R, Kozeretska I, Kyryachenko S, Andreev I, Maidanyuk D, Parnikoza IY, Kunakh V (2010) Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Sci 4:469–478

    Article  Google Scholar 

  • Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140:137–150

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Winterfeld G (2006) Molekularcytogenetische Untersuchungen an Hafergräsern (Aveneae) und Anderen Poaceae. Stapfia 86:1–170

    Google Scholar 

  • Winterfeld G, Röser M (2007a) Disposition of ribosomal DNAs in the chromosomes of perennial oats (Poaceae: Aveneae). Bot J Linn Soc 155:193–210

    Article  Google Scholar 

  • Winterfeld G, Röser M (2007b) Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae. Plant Syst Evol 264:75–100

    Article  CAS  Google Scholar 

  • Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

  • Zurita F, Jimenez R, Burgos M, de la Guardia R (1998) Sequential silver staining and in situ hybridization reveal a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: a hypothesis for NOR structure and function. J Cell Sci 111:1433–1439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONICET, ANPCyT-FONCyT and SECyT-UNC for financial support and to Dirección Nacional del Antártico and the personnel of the Carlini Station for logistic support for fieldwork in Antarctica. This work was funded by Project PICTO 2010–0095 (ANPCyT-DNA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, M.L., Urdampilleta, J.D., Fasanella, M. et al. Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations. Polar Biol 39, 1663–1677 (2016). https://doi.org/10.1007/s00300-016-1890-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1890-5

Keywords

Navigation