Skip to main content

Advertisement

Log in

Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Microscopic analysis of the phytoplankton and other protist communities in High Arctic lakes has shown that they often contain taxa in the Chrysophyceae. Such studies have been increasingly supported by pigment analysis using high-performance liquid chromatography (HPLC) to identify the major algal groups. However, the use of 18S rRNA gene surveys in other systems indicates that many protists, especially small heterotrophs, are underreported or missed by microscopy and HPLC. Here, we investigated the late summer protist community structure of three contrasting lakes in High Arctic polar desert catchments (Char Lake at 74°42′ N, Lake A at 83°00′ N and Ward Hunt Lake at 83°05′ N) with a combination of microscopy, pigment analysis and small subunit 18S ribosomal RNA gene surveys. All three methods showed that chrysophytes were well represented, accounting for 50–70% of total protist community biomass and 25–50% of total 18S rRNA gene sequences. HPLC analysis supported these observations by showing the ubiquitous presence of chrysophyte pigments. The clone libraries revealed a greater contribution of heterotrophs to the protist communities than suggested by microscopy. The flagellate Telonema and ciliates were common in all three lakes, and one fungal sequence was recovered from Char Lake. The approaches yielded complementary information about the protist community structure in the three lakes and underscored the importance of chrysophytes, suggesting that they are well adapted to cope with the low nutrient supply and strong seasonality that characterize the High Arctic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Andersen RA, Van de Peer Y, Potter D, Sexton JP, Kawachi M, LaJeunesse T (1999) Phylogenetic analysis of the SSU rRNA from members of the Chrysophyceae. Protist 150:71–84. doi:10.1016/S1434-4610(99)70010-6

    Article  PubMed  CAS  Google Scholar 

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–495

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697. doi:10.1111/j.1462-2920.2005.00743.x

    Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a High Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130. doi:10.1111/j.1529-8817.2005.00154.x

    Article  CAS  Google Scholar 

  • Bourrelly P (1968) Les algues d’eau douce II: Les algues jaunes et brunes. Société Nouvelle des Éditions Boubée, Paris

    Google Scholar 

  • Bråte J, Klaveness D, Rygh T, Jakobsen KS, Shalchian-Tabrizi K (2010) Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations. BMC Microbiol 10:168. doi:10.1186/1471-2180-10-168

    Article  PubMed  Google Scholar 

  • Butler HG, Edworthy MG, Ellis-Evans JC (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshw Biol 43:215–230. doi:10.1046/j.1365-2427.2000.00542.x

    Article  Google Scholar 

  • Canter-Lund H, Lund WGJ (1995) Freshwater algae: their microscopic world explored. Biopress Limited, Bristol

    Google Scholar 

  • Caron DA (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl Environ Microbiol 46:491–498

    PubMed  CAS  Google Scholar 

  • Christoffersen KS, Amsinck SL, Landkildehus F, Lauridsen TL, Jeppesen E (2008) Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Adv Ecol Res 40:371–389. doi:10.1016/S0065-2504(07)00016-5

    Google Scholar 

  • Diez B, Pedròs-Aliò C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Env Microbiol 67:2932–2941

    Article  CAS  Google Scholar 

  • Findlay DL, Kling HJ (1979) A species list and pictorial reference to the phytoplankton of Central and Northern Canada: Part I. Department of Fisheries and the Environment, Winnipeg

    Google Scholar 

  • Forsström L, Sorvari S, Korhola A, Rautio M (2005) Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Polar Biol 28:846–861. doi:10.1007/s00300-005-0008-2

    Article  Google Scholar 

  • Gerhart DZ, Likens GE (1975) Enrichment experiments for determining nutrient limitation: four methods compared. Limnol Oceanogr 20:649–653

    Article  Google Scholar 

  • Gibson JAE, Vincent WF, Van Hove P, Belzile C, Wang X, Muir D (2002) Geochemistry of ice-covered, meromictic Lake A in the Canadian High Arctic. Aquat Geochem 8:97–119

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hara S, Tanoue E, Zenimoto M, Komaki Y, Takahashi E (1986) Morphology and distribution of heterotrophic protists along 75°E in the Southern Ocean. Mem Natl Inst Polar Res Spec Issue 40:69–80

    Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243. doi:10.1128/AEM.02611-10

    Article  PubMed  CAS  Google Scholar 

  • Hasle GR (1978) Settling: the inverted microscope method. In: Sournia A (ed) Phytoplankton manual, UNESCO Monographs on Oceanographic Methodology, Paris, vol 40, pp 88–96

  • Hendriks L, De Baere R, Van de Peer Y, Neefs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 32:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Holmgren SK (1984) Experimental lake fertilization in the Kuokkel area, Northern Sweden: Phytoplankton biomass and algal composition in natural and fertilized subarctic lakes. Int Revue ges Hydrobiol 69:781–817

    Article  Google Scholar 

  • Jacquet S, Briand J, Leboulanger C, Avoisjacquet C, Oberhaus L, Tassin B, Vinconleite B, Paolini G, Druart J, Anneville O (2005) The proliferation of the toxic cyanobacterium following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–672. doi:10.1016/j.hal.2003.12.006

    Article  Google Scholar 

  • Jeffries MO, Krouse HR, Shakur MA, Harris SA (1984) Isotope geochemistry of stratified Lake ‘A’, Ellesmere Island, N.W.T., Canada. Can J Earth Sci 21:1007–1017

    Article  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202. doi:10.1038/ismej.2009.113

    Article  PubMed  CAS  Google Scholar 

  • Kalff J, Kling HJ, Holmgren SH, Welch HE (1975) Phytoplankton, phytoplankton growth and biomass cycles in an unpolluted and in a polluted polar lake. Verh int Ver Limnol 19:487–495

    Google Scholar 

  • Katechakis A, Stibor H (2006) The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions. Oecologia 148:692–701. doi:10.1007/s00442-006-0413-4

    Article  PubMed  Google Scholar 

  • Klaveness D, Shalchian-Tabrizi K, Thomsen HA, Eikrem W, Jakobsen KS (2005) Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. Int J Syst Evol Microbiol 55:2595–2604. doi:10.1099/ijs.0.63652-0

    Article  PubMed  CAS  Google Scholar 

  • Kozak A (2005) Seasonal changes occurring over four years in a reservoir’s phytoplankton composition. Pol J Environ Stud 14:451–465

    Google Scholar 

  • Kristiansen J, Wilken LR, Jürgensen T (1995) A bloom of Mallomonas acaroides, a silica-scaled chrysophyte, in the crater pond of a pingo, Northwest Greenland. Polar Biol 15:319–324

    Article  Google Scholar 

  • Laybourn-Parry J, Marshall WA (2003) Photosynthesis, mixotrophy and microbial plankton dynamics in two high Arctic lakes during summer. Polar Biol 26:517–524. doi:10.1007/s00300-003-0514-z

    Article  Google Scholar 

  • Lizotte MP (2008) Phytoplankton and primary production. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. University Press, London, pp 157–178

    Google Scholar 

  • Logares R, Shalchian-Tabrizi K, Boltovskoy A, Rengefors K (2007) Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions. Mol Phylogenet Evol 45:887–903. doi:10.1016/j.ympev.2007.08.005

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy C, Potvin M (2011) Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. J Plankton Res 33:431–444

    Article  Google Scholar 

  • Lovejoy C, Vincent WF, Frenette JJ, Dodson JJ (1993) Microbial gradients in a turbid estuary: Application of a new method for protozoan community analysis. Limnol Oceanogr 38:1295–1303

    Article  Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085. doi:10.1128/AEM.72.5.3085

    Article  PubMed  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Bock C, Li HR, Padisàk J, Krienitz L (2011) Molecular and microscopic diversity of planktonic eukaryotes in the oligotrophic Lake Stechlin (Germany). Hydrobiologia 661:133–143

    Article  CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Montresor M, Procaccini G, Stoecker DK (1999) Polarella glacialis, Gen. Nov., Sp. Nov. (Dinophyceae): Suessiaceae are still alive! J Phycol 35:186–197. doi:10.1046/j.1529-8817.1999.3510186.x

    Google Scholar 

  • Montresor M, Lovejoy C, Orsini L, Procaccini G, Roy S (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194. doi:10.1007/s00300-002-0473-9

    Google Scholar 

  • Moreira D, López-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87. doi:10.1016/j.femsec.2004.11.001

    Article  PubMed  CAS  Google Scholar 

  • Nicholls KH (2009) Chrysophyte blooms in the plankton and neuston of marine and freshwater systems. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, New York, pp 181–213

    Google Scholar 

  • Packroff G, Woelfl S (2000) A review on the occurrence and taxonomy of heterotrophic protists in extreme acidic environments of pH values ≤3. Hydrobiologia 433:153–156

    Article  Google Scholar 

  • Panzenböck M, Möbes-Hansen B, Albert R, Herndl GJ (2000) Dynamics of phyto- and bacterioplankton in a high Arctic lake on Franz Joseph Land archipelago. Aquat Microb Ecol 21:265–369

    Article  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Pfandl K, Chatzinotas A, Dyal P, Boenigk J (2009) SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles, Chrysophyceae). Limnol Oceanogr 54:171–181

    Article  CAS  Google Scholar 

  • Pick FR, Lean DRS (1984) Diurnal movements of metalimnetic phytoplankton. J Phycol 20:430–436

    Article  Google Scholar 

  • Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. doi:10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Pollingher U (1981) The structure and dynamics of the phytoplankton assemblages in Lake Kinneret, Israel. J Plankton Res 3:93–105. doi:10.1093/plankt/3.1.93

    Article  CAS  Google Scholar 

  • Potvin M, Lovejoy C (2009) PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56:174–181. doi:10.1111/j.1550-7408.2008.00386.x

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2009) Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, New York, pp 95–118

    Google Scholar 

  • Rengefors K, Laybourn-Parry J, Logares R, Marshall WA, Hansen G (2008) Marine-derived dinoflagellates in Antarctic saline lakes: community composition and annual dynamics. J Phycol 44:592–604. doi:10.1111/j.1529-8817.2008.00517.x

    Article  CAS  Google Scholar 

  • Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425. doi:10.1111/j.1462-2920.2005.00828.x

    Article  PubMed  CAS  Google Scholar 

  • Rigler FH (1974) The Char Lake project: a study of energy flow in a high Arctic lake. In: Hillbrecht-Ilkowska KA (ed) Productivity problems of freshwaters. Polish Scientific Publishers, Warsaw, pp 287–300

    Google Scholar 

  • Rothhaupt KO (1996) Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77:716–724

    Article  Google Scholar 

  • Sandgren CD, Smol JP, Kristiansen J (2009) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, New York

    Google Scholar 

  • Schindler DW, Welch HE, Kalff J, Brunskill GJ, Kritsch N (1974) Physical and chemical limnology of Char Lake, Cornwallis Island (75′N lat.). J Fish Res Board Can 31:585–607

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA et al (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microbiol 75:7537. doi:10.1128/AEM.01541-09

    Article  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Eikrem W, Klaveness D, Vaulot D, Minge MA, Le Gall F, Romari K et al (2006) Telonemia, a new protist phylum with affinity to chromist lineages. Proc R Soc B 273:1833–1842. doi:10.1098/rspb.2006.3515

    Article  PubMed  CAS  Google Scholar 

  • Sheath RG (1986) Seasonality of phytoplankton in northern tundra ponds. Hydrobiologia 138:75–83

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Skuja H (1948) Taxonomie des phytoplankton einiger seen in Uppland, Schweden. Symbolae Botan Upsalienses 9:1–399

    Google Scholar 

  • Smol J (1988) Chrysophycean microfossils in paleolimnological studies. Palaeogeogr Palaeocl 62:287–297. doi:10.1016/0031-0182(88)90058-2

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Yanagita T (1981) Improved fluorescent microscopy for measuring the standing stock of phytoplankton including fragile components. Mar Biol 64:207–211

    Article  Google Scholar 

  • Unrein F, Izaguirre I, Massana R, Balagué V, Gasol JM (2005) Nanoplankton assemblages in maritime Antarctic lakes: characterisation and molecular fingerprinting comparison. Aquat Microb Ecol 40:269–282. doi:10.3354/ame040269

    Article  Google Scholar 

  • Vallières C, Retamal L, Ramlal P, Osburn C, Vincent WF (2008) Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean. J Marine Syst 74:756–773. doi:10.1016/j.jmarsys.2007.12.002

    Article  Google Scholar 

  • Van Hove P, Belzile C, Gibson JAE, Vincent WF (2006) Coupled landscape-lake evolution in High Arctic Canada. Can J Earth Sci 43:533–546. doi:10.1139/E06-003

    Article  Google Scholar 

  • Van Hove P, Vincent WF, Galand PE, Wilmotte A (2008) Abundance and diversity of picocyanobacteria in High Arctic lakes and fjords. Algol Stud 126:209–227. doi:10.1127/1864-1318/2008/0126-0209

    Article  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820. doi:10.1111/j.1574-6976.2008.00121.x

    Article  PubMed  CAS  Google Scholar 

  • Veillette J, Martineau MJ, Antoniades D, Sarrazin D, Vincent WF (2011) Effects of loss of perennial lake ice on mixing and phytoplankton dynamics: Insights from High Arctic Canada. Ann Glaciol 51:56–70

    Article  Google Scholar 

  • Villeneuve V, Vincent WF, Komàrek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia 123:199–224

    Google Scholar 

  • Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, London, pp 1–24

    Google Scholar 

  • Vincent WF, Whyte LG, Lovejoy C, Greer CW, Laurion I, Suttle CA, Corbeil J, Mueller DR (2009) Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci 3:171–180. doi:10.1016/j.polar.2009.05.004

    Article  Google Scholar 

  • Voronin LV (1997) Aquatic and aero-aquatic hyphomycetes in small lakes from Vorkuta vicinities. Mikol Fitopatol 31:9–17

    Google Scholar 

  • Vørs N, Buck KR, Chavez FP, Eikrem W, Hansen LE, Ostergaard JB, Thomsen HA (1995) Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep-Sea Res II 42:585–602

    Article  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic Press, Elsevier Science, Amsterdam

    Google Scholar 

  • Welch HE Jr (1973) Emergence of Chironomidae (Diptera) from Char Lake, Resolute, Northwest Territories. Can J Zool 51:1113–1123

    Article  Google Scholar 

  • Wilken LR, Kristiansen J, Jürgensen T (1995) Silica-scaled chrysophytes from the peninsula of Nuusuaq/Nûugssuaq. Nova Hedwigia 61:355–366

    Google Scholar 

  • Willoughby LG (2001) The activity of Rhizophlyctis rosea in soil: some deductions from laboratory observations. Mycologist 15:113–117

    Article  Google Scholar 

  • Yubuki N, Nakayama T, Inouye I (2008) A unique life cycle and perennation in a colorless chrysophyte Spumella sp. J Phycol 44:164–172. doi:10.1111/j.1529-8817.2007.00441.x

    Article  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microb Ecol 52:79–92. doi:10.1016/j.femsec.2004.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Vallières for microscopic counts, to M.-J. Martineau for the HPLC analyses and to J. Veillette, D. Sarrazin and S. Bourget for help in the field. This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Network of Centres of Excellence ArcticNet, the Canada Research Chair program and the Fonds Québécois de la Recherche sur la Nature et les Technologies, with logistic support from Polar Continental Shelf Project (this is PCSP contribution no 027-11). We also thank Parks Canada for the use of their facilities in Quttinirpaaq National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Charvet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charvet, S., Vincent, W.F. & Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol 35, 733–748 (2012). https://doi.org/10.1007/s00300-011-1118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1118-7

Keywords

Navigation