Skip to main content

Advertisement

Log in

Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Thermal tolerance is one of the major determinants of successful establishment and spread of invasive aliens. Merizodus soledadinus (Coleoptera, Carabidae) was accidentally introduced to Kerguelen from the Falkland Islands in 1913. On Kerguelen, the climate is cooler than the Falklands Islands but has been getting warmer since the 1990s, in synchrony with the rapid expansion of M. soledadinus. We aimed to investigate the thermal sensitivity in adults of M. soledadinus and hypothesised that climate warming has assisted the colonisation process of M. soledadinus. We examined (1) survival of constant low temperatures and at fluctuating thermal regimes, (2) the critical thermal limits (CTmin and CTmax) of acclimated individuals (4, 8 and 16°C), (3) the metabolic rates of acclimated adults at temperatures from 0 to 16°C. The FTRs moderately increased the duration of survival compared to constant cold exposure. M. soledadinus exhibited an activity window ranged from −5.5 ± 0.3 to 38 ± 0.5°C. The Q 10 after acclimation to temperatures ranging from 0 to 16°C was 2.49. Our work shows that this species is only moderately cold tolerant with little thermal plasticity. The CTmin of M. soledadinus are close to the low temperatures experienced in winter on Kerguelen Islands, but the CTmax are well above summer conditions, suggesting that this species has abundant scope to deal with current climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Anderson AR, Hoffmann AA, McKechnie SW (2005) Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genet Res 85:15–22

    Article  PubMed  Google Scholar 

  • Arrhenius S (1915) Quantitative laws in biological chemistry. Bell, London

    Book  Google Scholar 

  • Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond B 357:849–861

    Article  CAS  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom DM, Chown SL (1999) Life at the front, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–477

    Article  PubMed  Google Scholar 

  • Bergstrom DM, Convey P, Huiskes AHL (2006) Trends in Antarctic terrestrial and limnetic ecosytems. Springer, The Netherlands

    Book  Google Scholar 

  • Block W, Somme L (1983) Low temperature adaptations in beetles from the sub-Antarctic Islands of South Georgia. Polar Biol 2:109–114

    Article  Google Scholar 

  • Chevrier M (1996) Introduction de deux espèces d’insectes aux Iles Kerguelen: processus de colonisation et exemples d’interactions. Thèse de Doctorat d’Université, Université de Rennes 1

  • Colinet H, Hance T (2010) Inter-specific variation in the response to low temperature storage in different aphid parasitoids. Ann Appl Biol 156:147–156

    Article  Google Scholar 

  • Colinet H, Renault D, Hance T, Vernon P (2006) The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani. Physiol Entomol 31:234–240

    Article  Google Scholar 

  • Colinet H, Hance T, Vernon P, Bouchereau A, Renault D (2007a) Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius Colemani (Hymenoptera: Aphidiinae)? Comp Biochem Physiol A 147:484–492

    Article  Google Scholar 

  • Colinet H, Nguyen TTA, Cloutier C, Michaud D, Hance T (2007b) Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochem Mol Biol 37:1177–1188

    Article  PubMed  CAS  Google Scholar 

  • Colinet H, Lee SF, Hoffmann A (2010) Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J 277:174–185

    Article  PubMed  CAS  Google Scholar 

  • Colinet H, Lalouette L, Renault D (2011) A model for the time–temperature–mortality relationship in the chill-susceptible beetle, Alphitobius diaperinus, exposed to fluctuating thermal regimes. J Therm Biol (in press). doi:10.1016/j.jtherbio.2011.07.004

  • Convey P (2001) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther GR, Burga CA, Edwards PJ (eds) ‘‘Fingerprints’’ of climate change–adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42

    Google Scholar 

  • Convey P (2006) Antarctic climate change and its influences on terrestrial ecosystems. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 235–272

    Google Scholar 

  • Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period. Ecology 83:3130–3140

    Article  Google Scholar 

  • Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602

    Article  Google Scholar 

  • Coulson SJ, Bale JS (1996) Supercooling and survival of the beech leaf mining weevil Rhynchaenus fagi L. (Coleoptera: Curculionidae). J Insect Physiol 42:617–623

    Article  CAS  Google Scholar 

  • Crafford JE, Chown SL (1993) Respiratory metabolism of sub-Antarctic insects from different habitats on Marion Island. Polar Biol 13:411–415

    Article  Google Scholar 

  • Darlington PJ (1970) Coleoptera: Carabidae of South Georgia. Pac Insects Monogr 23:234

    Google Scholar 

  • David JR, Gibert P, Pla E, Petavy G, Karan D, Moreteau B (1998) Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J Therm Biol 23:291–299

    Article  Google Scholar 

  • Fischer K, Kölzow N, Höltje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166:23–33

    Article  PubMed  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk M, Convey P, Skotnicki M, Bergstrom M (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Ghalambor C, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  PubMed  Google Scholar 

  • Glanville EJ, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 209:4869–4877

    Article  PubMed  CAS  Google Scholar 

  • Hanč Z, Nedvĕd O (1999) Chill injury at alternating temperatures in Orchesella cincta (Collembola: Entomobryidae) and Pyrrhocoris apterus (heteroptera: Pyrrhocoridae). Eur J Entomol 96:165–168

    Google Scholar 

  • Jeannel R (1940) Croisière du Bougainville aux îles australes françaises. III. Coléoptères. Memoires du Muséum National d’Histoire Naturelle, France, Série A 14:63–202

    Google Scholar 

  • Johns PM (1974) Arthropoda of the subantarctic islands of New Zealand. I. Coleoptera: Carabidae. Southern New Zealand, Patagonian and Falkland Islands insular Carabidae. J R Soc N Z 4:283–302

    Article  Google Scholar 

  • Keister M, Buck J (1974) Respiration: some exogenous and endogenous effects on rate of respiration. The physiology of the Insecta. Academic Press, New York, pp 469–509

    Google Scholar 

  • Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414

    Article  Google Scholar 

  • Knies JL, Kingsolver JG (2010) Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness. Am Nat 176:227–233

    Article  PubMed  Google Scholar 

  • Koštál V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J Exp Biol 207:1509–1521

    Article  PubMed  Google Scholar 

  • Koštál V, Renault D, Mehrabianová A, Bastl J (2007) Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp Biochem Physiol A 147:231–238

    Article  Google Scholar 

  • Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS (2010) Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J Insect Physiol 56:822–830

    Article  PubMed  CAS  Google Scholar 

  • Lalouette L, Koštál V, Colinet H, Gagneul D, Renault D (2007) Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J 274:1759–1767

    Article  PubMed  CAS  Google Scholar 

  • Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D (2011) Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp Biochem Physiol A 158:229–234

    Article  CAS  Google Scholar 

  • Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands to assess the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invasions 13:1195–1208

    Article  Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, New York

    Book  Google Scholar 

  • Marshall KE, Sinclair BJ (2010) Repeated stress exposure results in a survival-reproduction trade off in Drosophila melanogaster. Proc R Soc Lond 277:963–969

    Article  Google Scholar 

  • Nedvěd O, Lavy D, Verhoef HA (1998) Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct Ecol 12:816–824

    Article  Google Scholar 

  • Ottesen PS (1990) Diel activity patterns of Carabidae, Staphylinidae and Perimylopidae (Coleoptera) at South Georgia, Sub-Antarctic. Polar Biol 10:515–519

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Res Part II 53:1071–1104

    Article  Google Scholar 

  • Pörtner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313

    Article  PubMed  Google Scholar 

  • Powell SJ, Bale JS (2006) Effect of long-term and rapid cold hardening on the cold torpor temperature of an aphid. Physiol Entomol 31:348–352

    Article  Google Scholar 

  • Renault D (2011) Long-term after-effects of cold exposure in adult Alphitobius diaperinus (Tenebrionidae): the need to link survival ability with subsequent reproductive success. Ecol Entomol 36:36–42

    Article  Google Scholar 

  • Renault D, Nedvĕd O, Hervant F, Vernon P (2004) The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiol Entomol 29:139–145

    Article  Google Scholar 

  • Rojas RR, Leopold RA (1996) Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33:447–458

    Article  Google Scholar 

  • Sinclair BJ, Roberts SP (2005) Acclimation, shock and hardening in the cold. J Therm Biol 30:557–562

    Article  Google Scholar 

  • Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Smith VR (2002) Climate change in the sub-Antarctic: an illustration from Marion Island. Clim Change 52:345–357

    Article  CAS  Google Scholar 

  • Sømme L (1974) Anaerobiosis in some alpine Coleoptera. Norsk Entomologisk Tidsskrift 21:155–158

    Google Scholar 

  • Sømme L, Ring RA, Block W, Worland MR (1989) Respiratory metabolism of Hydromedion sparsutum and Perimylops antarcticus (Coleoptera, Perimylopidae) from South Georgia. Polar Biol 10:135–139

    Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Terblanche JS, Klok CJ, Krafsur ES, Chown SL (2006) Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modeling. Am J Trop Med Hyg 74:786–794

    PubMed  Google Scholar 

  • Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc R Soc B 274:2935–2942

    Article  PubMed  Google Scholar 

  • Terblanche JS, Nyamukondiwa C, Kleynhans E (2010) Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Caratitis capitata). Entomol Exp Appl 137:304–315

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? Biol Invasions 193:197–211

    Article  Google Scholar 

  • Todd CM (1997) Respiratory metabolism in two species of carabid beetle from the sub-Antarctic island of South Georgia. Polar Biol 18:66–171

    Article  Google Scholar 

  • Todd CM, Block W (1997) Responses to desiccation in four coleopterans from sub-Antarctic South Georgia. J Insect Physiol 43:905–913

    Article  PubMed  CAS  Google Scholar 

  • Tollarová-Borovanská M, Lalouette L, Koštál V (2009) Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of 70 kDa heat shock protein expression. CryoLetters 30:312–319

    PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16

    Google Scholar 

  • Wang HS, Zhou CS, Guo W, Kang L (2006) Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust. Cryobiology 53:206–217

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Pelini SL, Hellmann JJ, Sinclair BJ (2010) Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biol Lett 6:274–277

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the French Ministry of Foreign Affairs that funded the travel of D. Renault from France to Canada (French–Canada scientific cooperation). The work in Canada was funded by NSERC and Canadian Foundation for Innovation grants to BJS. This research was supported by the Institut Polaire Francais (IPEV, programme 136 coordinated by Marc Lebouvier), the CNRS (Zone-Atelier de Recherches sur l’Environnement Antarctique et Subantarctique), and the Agence Nationale de la Recherche (ANR-07-VULN-004, Vulnerability of native communities to invasive insects and climate change in sub-Antarctic Islands, EVINCE). We also thank Peter Convey, Steve Colwell and Thomas Bracegirdlle (British Antarctic Survey, Cambridge UK) for the meteorological data from the Falklands Islands. This research is linked with the SCAR Evolution and Biodiversity in the Antarctic research programme. We thank Jeff Bale for the jacketed glass cylinder and Roger Worland and an anonymous referee for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lalouette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalouette, L., Williams, C.M., Cottin, M. et al. Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands. Polar Biol 35, 509–517 (2012). https://doi.org/10.1007/s00300-011-1096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1096-9

Keywords

Navigation