Skip to main content

Advertisement

Log in

Benthic mats in Antarctica: biophysical coupling of sea-bed hypoxia and sediment communities

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Transient white and grey mats were observed in depressions and enclosed basins in marine sediment in the Windmill Islands, East Antarctica. These patches have not been described in the Antarctic marine environment previously although a similar phenomenon has been described in the Arctic. Our aim was to describe the sediment geochemical and biological properties inside the patches and to determine their similarity to each other. We compared the benthic infaunal communities and the chemical properties of the sediment in the white patches to nearby sediment without white mats. We observed differences in sediment pH, Eh and elemental concentrations inside and outside patches. The benthic infaunal communities inside the patches were significantly different, lower in abundance and diversity, compared to outside the patches. The structure of the microbial communities within the mats was described by constructing clone libraries from four different patches. These clone libraries were dominated by bacteria from the bacteroidetes phylum. Clones closely related to sulphur-oxidising bacteria from the gammaproteobacteria and/or the epsilonproteobacteria were present in all libraries. This is the first detailed description of these patches in the Antarctic and demonstrates the link between physico-chemical factors and microbial and infaunal community structure. It appears that this phenomenon may be driven by the formation and persistence of sea-ice, and as both the spatial extent of sea-ice and its persistence in polar regions are likely to change under predicted climate change scenarios, we suggest this is a previously undocumented mechanism for climate change to impact polar ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Arakawa S, Sato T, Sato R, Zhang J, Gamo T, Tsunogai U, Hirota A, Yoshida Y, Usami R, Inagaki F, Kato C (2006) Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles 10:311–319

    Article  PubMed  CAS  Google Scholar 

  • Benlloch S, Lopez-Lopez A, Casamayor EO, Ovreas L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedros-Alio C, Rodriguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts and biogeography of prokaryotes within Antarctic Continental Shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Dann AL (2005) Biogeographic and quantitative analyses of abundant uncultivated gamma-proteobacterial clades from marine sediment. Microb Ecol 49:451–460

    Article  PubMed  CAS  Google Scholar 

  • Chernousova E, Gridneva E, Grabovich M, Dubinina G, Akimov V, Rossetti S, Kuever J (2009) Thiothrix caldifontis sp nov and Thiothrix lacustris sp nov, gammaproteobacteria isolated from sulfide springs. Int J Sys Evol Microbiol 59:3128–3135

    Article  CAS  Google Scholar 

  • Dahl E (1979) Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptation. Oikos 33:167–175

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  PubMed  CAS  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of the factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  PubMed  CAS  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  • Grassle JF, Grassle JP (1974) Opportunistic life histories and genetic systems in marine benthic polychaetes. J Mar Res 32:253–284

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Jorgensen BB (2010) Big sulfur bacteria. ISME J 4:1083–1084

    Article  PubMed  Google Scholar 

  • Jorgensen BB, Revsbech NP (1983) Colourless sulfur bacteria, Beggiatoa spp and Thiovulum spp in O2 and H2S microgradients. Appl Environ Microbiol 45:1261–1270

    PubMed  CAS  Google Scholar 

  • Kim SL, Thurber A, Hammerstrom K, Conlan K (2007) Seastar response to organic enrichment in an oligotrophic polar habitat. J Exp Mar Biol Ecol 346:66–75

    Article  Google Scholar 

  • Kvitek RG, Conlan KE, Iampietro PJ (1998) Black pools of death: hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment. Mar Ecol Prog Ser 162:1–10

    Article  Google Scholar 

  • Larner BL, Seen AJ, Palmer AS, Snape I (2007) A study of metal and metalloid contaminant availability in Antarctic marine sediments. Chemosphere 67:1967–1974

    Article  PubMed  CAS  Google Scholar 

  • Legeżyńska J, Węsławski JM, Presler P (2000) Benthic scavengers collected by baited traps in the high Arctic. Polar Biol 23:539–544

    Article  Google Scholar 

  • Li L, Guenzennec J, Nichols P, Henry P, Yanagibayashi M, Kato C (1999) Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J Ocean 55:635–642

    Article  CAS  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    Article  PubMed  CAS  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371–385

    Article  Google Scholar 

  • McAllen R, Davenport J, Bredendieck K, Dunne D (2009) Seasonal structuring of a benthic community exposed to regular hypoxic events. J Exp Mar Biol Ecol 368:67–74

    Article  Google Scholar 

  • Moune S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130

    Article  PubMed  CAS  Google Scholar 

  • Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005) Diversity of bacteria and archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2005) Fluviicola taffensis gen nov, sp nov, a novel freshwater bacterium of the family Cryomorphaceae in the phylum ‘Bacteroidetes’. Int J Sys Evol Microbiol 55:2189–2194

    Article  Google Scholar 

  • Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg R (1985) Eutrophication–the future marine coastal nuisance. Mar Poll Bull 16:227–231

    Article  CAS  Google Scholar 

  • Sainte-Marie B (1986) Feeding and swimming of lysianassid amphipods in a shallow cold-water bay. Mar Biol 91:219–229

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Slattery PN, Oliver JS (1986) Scavenging and other feeding habits of lysianassid amphipods (Orchomene spp.) from McMurdo Sound, Antarctica. Polar Biol 6:171–177

    Article  Google Scholar 

  • Snape I, Riddle MJ, Stark JS, Cole CM, King CK, Duquesne S, Gore DB (2001) Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec 37:199–214

    Article  Google Scholar 

  • Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen nov, sp nov and Thioalkalimicrobium sibericum sp nov, and Thioalkalivibrio versutus gen nov, sp nov, Thioalkalivibrio nitratis sp nov and Thioalkalivibrio denitrificans sp nov, novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Sys Evol Microbiol 51:565–580

    CAS  Google Scholar 

  • Stark JS, Riddle MJ, Simpson RD (2003a) Human impacts in soft-sediment assemblages at Casey Station, East Antarctica: spatial variation, taxonomic resolution and data transformation. Austral Ecol 28:287–304

    Article  Google Scholar 

  • Stark JS, Riddle MJ, Snape I, Scouller RC (2003b) Human impacts in Antarctic marine soft-sediment assemblages: correlations between multivariate biological patterns and environmental variables. Est Coast Shelf Sci 56:717–734

    Article  CAS  Google Scholar 

  • Taylor CD, Wirsen CO (1997) Microbiology and ecology of filamentous sulfur formation. Science 277:1483–1485

    Article  CAS  Google Scholar 

  • Tsutsumi H (1990) Population persistence of Capitella sp. (Polychaeta; Capitellidae) on a mud flat subject to environmental disturbance by organic enrichment. Mar Ecol Prog Ser 63:147–156

    Article  Google Scholar 

  • Urios L, Intertaglia L, Lesongeur F, Lebaron P (2009) Haliea rubra sp nov, a member of the gammaproteobacteria from the Mediterranean Sea. Int J Sys Evol Microbiol 59:1188–1192

    Article  CAS  Google Scholar 

  • Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp that produces filamentous sulfur. Appl Environ Microbiol 68:316–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the 2006 Casey dive team for assistance with sample collection and processing. This work was supported by Australian Antarctic Science grant 2201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Powell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, S.M., Palmer, A.S., Johnstone, G.J. et al. Benthic mats in Antarctica: biophysical coupling of sea-bed hypoxia and sediment communities. Polar Biol 35, 107–116 (2012). https://doi.org/10.1007/s00300-011-1043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1043-9

Keywords

Navigation