Skip to main content

Advertisement

Log in

Screening of antioxidant potential of Arctic lichens

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antioxidants are compounds that scavenge the free radicals produced in living organisms. The antioxidant potential of eight Arctic lichen species was evaluated in vitro using free radical scavenging activity (FRS), inhibition of lipid peroxidation (ILP), and Trolox equivalent antioxidant capacity assay (TEAC). FRS activities of lichen species in various organic solvents such as methanol, ethanol, acetone, and dimethyl sulphoxide (DMSO) were in the range 9.6–51.77%, while ILP activities in these solvents ranged from 32.5 to 82.43%. Pseudophebe pubescens showed the highest ILP (82.43%) and FRS (51.77%) activities as compared to other lichen species and the standard antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). The TEAC value was also found to be higher in all species compared to the standard water soluble vitamin E analog Trolox (3.9 mM). The order of antioxidative activities in lichen species was Pseudophebe pubescens > Cladonia amaurocraea > Cladonia mediterranea > Physcia caesia > Flavocetraria nivalis > Cetraria fastigata > Xanthoria elegans > Umbilicaria hyperborea. This is the first report of the measurement of antioxidant potential in Arctic lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ansaldo M, Luquet CM, Evelson PA, Polo JM, Llesuy S (2000) Antioxident levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol 23:160–165

    Article  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2005) Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotech Lett 27:991–995

    Article  CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2006) Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT 39:80–85

    Article  CAS  Google Scholar 

  • Bhattarai HD, Paude B, Lee HS, Lee YK, Yim JH (2008) Antioxidant activity of Sanionia uncinata, a polar mass species from King George Island, Antarctica. Phytother Res 22:1635–1639

    Article  PubMed  Google Scholar 

  • Bjerke JW, Zielke M, Solheim B (2003) Long-term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytol 159:361–367

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Article  Google Scholar 

  • Boustie J, Grube M (2005) Lichens a promising source of bioactive secondary metabolites. PGR 3:273–287

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Henttonen H, Laine K, Taulavuori K, Taulavuori E, Zöckler C (2004) Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio 33:404–417

    PubMed  Google Scholar 

  • Diplock AT (1997) Will the good fairies please proves to us that vitamin E lessens human degenerative of disease? Free Radic Res 27:511–532

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Elvebakk A, Hertel H (1996) Part 6. Lichens. In: Elvebakk A, Prestrud K (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria, vol 198. Norsk Polarinstitutt Skrifter, pp 271–359

  • Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) The identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr 646:417–427

    Article  CAS  Google Scholar 

  • Green TGA, Schroeter B, Sancho LG (2007) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Functional plant ecology, 2nd edn. CRC Press, Baton Rota, pp 389–433

    Google Scholar 

  • Grice HC (1986) Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem Toxicol 24:1127–1130

    Article  Google Scholar 

  • Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu OI (2002) On the in vitro antioxidant properties of melatonin. J Pineal Res 33:167–171

    Article  PubMed  CAS  Google Scholar 

  • Gulcin I, Oktay M, Kırecci E, Kufrevioglu OI (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Article  CAS  Google Scholar 

  • Halliwel B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, p 936

    Google Scholar 

  • Hengartner M (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Hettiarachchy NS, Glenn KC, Gnanasambandam R, Johnson MG (1996) Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties. J Food Sci 61:516–519

    Article  CAS  Google Scholar 

  • Higuchi M, Miura Y, Boohene J, Kinoshita Y, Yamamota Y, Yoshimura I, Yamada Y (1993) Inhibition of tyrosinase activity by cultured lichen tissues and bionts. Planta Med 59:253–255

    Article  PubMed  CAS  Google Scholar 

  • Huttunen S, Lappalainen NM, Turunen J (2005) UV-absorbing compounds in subarctic herbarium bryophytes. Environ Pollut 133:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kappen L, Schroeter B, Scheidegger C, Sommerkorn M, Hestmark G (1996) Cold resistence and metabolic activity of lichens below 0°C. Adv Space Res 18:119–128

    Article  Google Scholar 

  • Kinsella JE, Frankel EN, German JB, Kanner J (1993) Possible mechanism for the protective role of the antioxidant in wine and plant foods. Food Technol 47:85–90

    CAS  Google Scholar 

  • Kourounakis AP, Galanakis D, Tsiakitzis K (1999) Synthesis and pharmacological evaluation of novel derivatives of anti-inflammatory drugs with increased antioxidant and anti-inflammatory activities. Drug Dev Res 47:9–16

    Article  CAS  Google Scholar 

  • Kranner I, Birtic S (2005) A Modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared to its isolated symbiotic partners. In: MacRobbie E (ed) PNAS-102. University of Cambridge, Cambridge, pp 3141–3146

    Google Scholar 

  • Lai LS, Chou ST, Chao WW (2001) Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem 49:963–968

    Article  PubMed  CAS  Google Scholar 

  • Liegeois C, Lermusieau G, Collin S (2000) Measuring antioxidant efficiency of wort, malt, and hops against the 2, 2′-azobis (2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J Agric Food Chem 48:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Liu F, OoI VEC, Chang ST (1997) Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci 60:763–771

    Article  PubMed  CAS  Google Scholar 

  • Longton RE (1988) The biology of polar bryophytes and lichens. Cambridge University Press, Cambridge, p 391

    Book  Google Scholar 

  • Manojlovi NT, Vasiljevi P, Juskovi M, Najman S, Jankovi S, Andjelkovi AM (2010) HPLC analysis and cytotoxic potential of extracts from the lichen, Thamnolia vermicularis var. subuliformis. J Med Plants Res 4:817–823

    Google Scholar 

  • Matveyeva N, Chernov Y (2000) Biodiversity of terrestrial ecosystems. In: Nuttall M, Callaghan TV (eds) The Arctic environment, people, policy. Harwood Academic Publishers, Amsterdam, pp 233–274

    Google Scholar 

  • Miller NJ, Diplock AT, Rice-Evans CA (1995) Evaluation of the total antioxidant as a marker of the deterioration of apple juice on storage. J Agric Food Chem 43:1794–1801

    Article  CAS  Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    Article  PubMed  Google Scholar 

  • Naeth MA, Wilkinson SR (2008) Lichens as biomonitors of air quality around a diamond mine, northwest territories Canada. J Environ Qual 37:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Nash TH (1996) Lichen biology. Cambridge University Press, Britain, pp 1–289

    Google Scholar 

  • Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Smith RIL (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biol 8:972–983

    Article  Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Article  PubMed  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    Article  PubMed  CAS  Google Scholar 

  • Pannewitz S, Green TGA, Maysek K, Schlensog M, Seppelt R, Sancho GE, Türk R, Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarct Sci 17:341–352

    Article  Google Scholar 

  • Paudel B, Bhattarai HD, Lee JS, Hoog SG, Shin HW, Yim JH (2007) Antioxidant activity of Polar lichens from King George Island (Antarctica). Polar Biol 31:605–608

    Article  Google Scholar 

  • Pryor WA (1991) The antioxidant nutrient and disease prevention-what do we know and what do we need to find out? Am J Clin Nutr 53:391–393

    Google Scholar 

  • Raff M (1998) Cell suicide for beginners. Nature 396:119–122

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956

    Article  CAS  Google Scholar 

  • Riget F, Asmund G, Aastrup P (2000) The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Sci Total Environ 245:137–148

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, Noordijk AJ, Broekman RA, van Beem A, Meijkamp BM, de Bakker NVJ, van de Staaij JWM, Stroetenga M, Bohncke SJP, Konert M, Kars S, Peat H, Smith RIL, Convey P (2001) Polyphenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B. Plant Ecol 154:11–26

    Google Scholar 

  • Schroeter B, Kappen L, Green TGA, Seppelt RD (1997) Lichens and the Antarctic environment: effects of temperature and water availability on photosynthesis. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 103–117

    Google Scholar 

  • Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarct Sci 22:681–690

    Article  Google Scholar 

  • Schwendener S (1869) Die Algentypen der Flechtgonidien. Programm für die Rectorsfeier der Universität Basel. 4, pp 1–42

  • Senevirathne M, Kim SH, Siriwardhana N, Ha JH, Lee KW, Jeon YJ (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci Technol Int 12:27–38

    Article  CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Snell KRS, Kokubun T, Griffiths H, Convey P, Hodgson DA, Newsham KK (2009) Quantifying the metabolic cost to an Antarctic liverwort of responding to UV-B radiation exposure. Global Change Biol 15:2563–2573

    Article  Google Scholar 

  • Thomson JW (1984) American Arctic lichens. 2. The macrolichens. Columbia University Press, New York, p 504

    Google Scholar 

  • Verma N, Behera BC, Makhija U (2008a) Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in vitro. Appl Biochem Biotech 151:167–181

    Article  CAS  Google Scholar 

  • Verma N, Behera BC, Sonone A, Makhija U (2008b) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr J Biochem Res 2:225–231

    Google Scholar 

  • Weissman L, Garty J, Hochman A (2005) Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microb 71:6508–6514

    Article  CAS  Google Scholar 

  • Wichi HP (1988) Enhanced tumor development by butylated hydroxyanisol (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  Google Scholar 

  • Yilidirim A, Oktay M, Bilaloglu V (2001) The antioxidant activity of the leaves of Cydonia vulgaris. Turk J Med Sci 31:23–27

    Google Scholar 

  • Zeytinoglu H, Incesu Z, Ayaz Tuylu B, Turk AO, Barutca B (2008) Determination of Genotoxic, Antigenotoxic and Cytotoxic Potential of the Extract from Lichen Cetraria aculeata (Schreb.) Fr. in vitro. Phytother Res 22:118–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are highly indebted to Dr. Shailesh Nayak, Secretary Ministry of Earth Sciences, for encouragement and facilities. We express our gratitude to Prof. Peter Convey (British Antarctic Survey) for review and editing the English language and improving the quality of the manuscript. Thanks are also due to Dr. C.T. Achuthankutty, Dr. Renuka Badhe, and anonymous reviewers for their valuable suggestions. Author PS2 is thankful to Department of Science and Technology (DST), New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv M. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.M., Singh, P. & Ravindra, R. Screening of antioxidant potential of Arctic lichens. Polar Biol 34, 1775–1782 (2011). https://doi.org/10.1007/s00300-011-1027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1027-9

Keywords

Navigation