Skip to main content

Advertisement

Log in

Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We present a phytogeographical comparison between polar (Arctic and Antarctic) and non-polar strains of the cyanobacterial genus Phormidium, which plays a key role in Arctic and Antarctic ecosystems as primary producer. A total of 26 Phormidium strains were studied using a polyphasic approach, 18 from Arctic (Svalbard, Ellesmere Island and Scandinavian Arctic—Abisko) and Antarctic (Antarctic Peninsula—King George and James Ross Island) regions, and 8 from temperate sites (mostly situated in Central Europe). A phylogenetic tree was constructed and compared with similar 16S rRNA sequences retrieved from Genbank. Within the Phormidium autumnale cluster, genetic similarity of 16S rDNA was more related to geographical proximity of strain origin than to morphological similarity. No genetic identity of Phormidium strains from north and south polar regions was found. The cluster Phormidium autumnale apparently belongs to generic entities in which geographical limitation plays a prominent role. However, the cyanobacterial strains found in Europe suggest that the distribution areas of some Phormidium cyanobacteria overlap. The Phormidium autumnale cluster is evidently a very characteristic type and represents an isolated clade within the traditional genus Phormidium. According to morphological features and the structure of trichomes, it is most similar and thus probably belongs to the genus Microcoleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of Cyanophytes 5–Stigonematales. Arch Hydrobiol/Algolog Stud 59:1–73

    Google Scholar 

  • Bosli-Pavoni M (1970) Űber die Verteilung von Phormidien in Modellfliessgewässern. Schweiz Z Hydrol 32:486

    Article  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiv Conserv 5:1307–1335

    Article  Google Scholar 

  • Cadel-Six S, Peyraud-Thomas C, Brient L, de Marsac NT, Rippka R, Mejean A (2007) Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 73:7605–7614

    Article  CAS  PubMed  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komarek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    Article  CAS  PubMed  Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities of polar environment. In: Beyer L, Boelter M (eds) Ecological studies. Springer, Heidelberg, pp 303–319

    Google Scholar 

  • Elster J, Benson EE (2004) Life in the polar terrestrial environment a focus on algae and cyanobacteria. In: Fuller B, Benson EE (eds) Life in the frozen state. Taylor and Francis, London, pp 111–149

    Google Scholar 

  • Elster J, Svoboda J, Komárek J, Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79oN, Central Ellesmere Island, Canada. Arch Hydrobiol/Suppl Algol Studies 85:57–93

    Google Scholar 

  • Elster J, Lukesova A, Svoboda J, Kopecky J, Kanda H (1999) Diversity and abundance of soil algae in the polar desert, Sverdrup Pass central Ellesmere Island. Polar Rec 35:231–254

    Article  Google Scholar 

  • Elster J, Delmas RJ, Petit JR, Rehaková K (2007) Composition of microbial communities of aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosci Discuss 4:349–384

    Article  Google Scholar 

  • Elster J, Degma P, Kováčik Ľ, Valentová L, Šrámková K, Pereira AB (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63(6):839–847

    Article  Google Scholar 

  • Frenot Y, Steven L, Chown A, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72

    Article  PubMed  Google Scholar 

  • Friedmann EI (ed) (1993) Antarctic microbiology. Wiley, New York

    Google Scholar 

  • Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67:1902–1910

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles-Toril E, Amils R, Delmas RJ, Petit JR, Komárek J, Elster J (2009) Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples. Biogeoscience 6:33–44

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Ishida T, Watanabe MM, Sugiyama J, Yokota A (2001) Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82

    Article  CAS  PubMed  Google Scholar 

  • Kastovská K, Stibal M, Sabacká M, Cerná B, Santrucková H, Elster J (2006) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by the epifluorescence microscopy and PLFA. Polar Biol 30(3):277–287

    Article  Google Scholar 

  • Komárek J (1972) Temperaturbedingte morphologische Variabilität bei drei Phormidium -Arten in Kulturen. Preslia 44:293–307

    Google Scholar 

  • Komárek J (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica–a survey. Arch Hydrobiol/Algolog Stud 94:181–193

    Google Scholar 

  • Komárek J (2008) Recent changes in cyanobacterial taxonomy based on combined molecular, phenotype and ecological consequences. In: The Bat Sheva de Rotschild Seminar on Phytoplankton in the Physical Environment, 15th workshop IAP

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota -2. Teil/2nd Part: Oscillatoriales, Süsswasserflora von Mitteleuropa 19/2 edn. Elsevier/Spektrum, Heidelberg

    Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Article  Google Scholar 

  • Kubecková K, Elster J, Kanda H (2001) Periphyton ecology of glacial and snow-fed streams, Ny-Ålesund, Svalbard:the influence of discharge disturbances due to sloughing, scraping and peeling. In: Elster J et al (eds) Proceedings of international conference—algae and extreme environments—ecology and physiology, Nova Hedvigia, Beiheft 123:141–172

  • Marquardt J, Palinska KA (2007) Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187:397–413

    Article  CAS  PubMed  Google Scholar 

  • Mosier AC, Murray AE, Fritsen CH (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288

    Article  CAS  PubMed  Google Scholar 

  • Mullins T, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons repeal the same unknown bacterial linages in Atlantic and Pacifik bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  • Nadeau TN, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    Article  PubMed  Google Scholar 

  • Palinska K, Marquardt J (2008) Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales). Arch Microbiol 189:325–335

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rudi K, Jakobsen KS (1997) Cyanobacterial tRNA(Leu)(UAA) group I introns have polyphyletic origin. FEMS Microbiol Lett 156:293–298

    Article  CAS  PubMed  Google Scholar 

  • Sabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol 30:31–37

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Pryer MK, Miao V, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukar Microbiol 46:327–338

    Article  CAS  Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria, their diversity in time and space. Springer, Berlin

    Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 487–493

    Google Scholar 

  • Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100

    Article  CAS  PubMed  Google Scholar 

  • Wilmotte A, Stam W, Demoulin V (1997) Taxonomic study of marine oscillatorieaen strains (Cyanophyceae, Cyanobacteria) with narrow trichomes III. DNA-DNA hybridization studies and taxonomic conclusions. Arch Hydrobiol/Suppl Algol Studies 87:11–28

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Education of the Czech Republic (Kontakt ME 934, ME 945, INGO LA 341 and MEB 080822) for funding our research. We are very grateful to Mrs. Jana Šnokhousová for her technical assistance. Finally, we highly acknowledge the insightful comments of the reviewers that have significantly improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Otakar Strunecký or Josef Elster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strunecký, O., Elster, J. & Komárek, J. Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions?. Polar Biol 33, 1419–1428 (2010). https://doi.org/10.1007/s00300-010-0834-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0834-8

Keywords

Navigation