Skip to main content

Advertisement

Log in

The impact of ice melting on bacterioplankton in the Arctic Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Global warming and the associated ice melt are leading to an increase in the organic carbon in the Arctic Ocean. We evaluated the effects of ice melt on bacterioplankton at 21 stations in the Greenland Sea and Arctic Ocean in the summer of 2007, when a historical minimum of Arctic ice coverage was measured. Polar Surface Waters, which have a low temperature and low salinity and originate mainly from melted ice, contained a very low abundance of bacteria (7.01 × 105 ± 2.20 × 105 cells ml−1); however, these bacteria had high specific bacterial production (2.40 ± 1.61 fmol C bac−1 d−1) compared to those in Atlantic Waters. Specifically, bacterioplankton in Polar Surface Waters showed a preference for utilizing carbohydrates and had significantly higher specific activities of the glycosidases assayed, i.e. β-glucosidase, xylosidase, arabinosidase and cellobiosidase. Furthermore, bacterioplankton in Polar Sea Waters showed preferential growth on some of the carbohydrates in the Biolog Ecoplate, such as d-cellobiose and N-acetyl-d-glucosamine. Our results suggest that climate change and the associated melting of Arctic ice might induce changes in bacterioplankton functional diversity by enhancing the turnover of carbohydrates. Since organic aggregates are largely composed of polysaccharides, higher solubilization of aggregates might modify the carbon cycle, weaken the biological pump and have biogeochemical and ecological implications for the future Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Sáez L, Vázquez-Domínguez E, Pinhassi J, Cardelús C, Sala MM, Lekunberri I, Unrein F, Massana R, Simó R, Gasol JM (2008) Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11:397–409

    Article  CAS  Google Scholar 

  • Amon RMW, Benner R (2003) Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep-Sea Res I 50:151–169

    Article  CAS  Google Scholar 

  • Anderson MR, Rivkin RB (2001) Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat Microb Ecol 25:195–206

    Article  Google Scholar 

  • Arnosti C (2008) Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microb Ecol 66(2):343–351

    Google Scholar 

  • Arnosti C, Durkin S, Jeffrey WH (2005) Patterns of extracellular enzyme activities among pelagic marine microbial communities: implications for cycling of dissolved organic carbon. Aquat Microb Ecol 38:135–145

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Baltar F, Aristegui J, Sintes E, van Aken HM, Gasol JM, Herndl GJ (2009) Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol 11:1998–2014

    Article  CAS  PubMed  Google Scholar 

  • Boras JA, Sala MM, Arrieta JM, Sá EL, Felipe J, Duarte CM, Vaqué D (2010) Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean. Polar Biol. doi:10.1007/s00300-010-0798-8

  • Bussmann I (1999) Bacterial utilization of hymic substances from the Arctic Ocean. Aquat Microb Ecol 19:37–45

    Article  Google Scholar 

  • Carmack EC, Macdonald RW, Jasper S (2004) Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea. Mar Ecol Prog Ser 277:37–50

    Article  Google Scholar 

  • Celussi M, Cataletto B, Fonda Umani S, Del Negro P (2009) Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea. Deep-Sea Res I 56(12):2193–2205

    Article  CAS  Google Scholar 

  • Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters—activity ratios and temperature responses in 3 oceanographic provinces. Limnol Oceanogr 40:1042–1049

    Article  CAS  Google Scholar 

  • Christian BW, Lind OT (2006) Key issues concerning biolog use for aerobic and anaerobic freshwater bacterial community-level physiological profiling. Int Rev Hydrobiol 91:257–268

    Article  Google Scholar 

  • Chróst RJ (1990) Microbial ectoenzymes in aquatic environments, str. 47 78. W: In: Overbeck J, Chróst RJ (eds) Aquatic microbial ecology: biochemical and molecular approaches. Springer, New York

  • Comte J, del Giorgio PA (2009) Links between resources, C metabolism and the major components of bacterioplankton community structure across a range of freshwater ecosystems. Environ Microbiol 11:1704–1716

    Article  CAS  PubMed  Google Scholar 

  • Cowie GL, Hedges JI (1984) Carbohydrate sources in a coastal marine-environment. Geochim Cosmochim Acta 48:2075–2087

    Article  CAS  Google Scholar 

  • Cunha MA, Almeida MA, Alcantara F (2001) Short-term responses of the natural planktonic bacterial community to the changing water properties in an estuarine environment: Ectoenzymatic activity, glucose incorporation, and biomass production. Microb Ecol 42:69–79

    CAS  PubMed  Google Scholar 

  • Del Giorgio P, Bird DF, Prairie YT, Planas D (1996) Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO13. Limnol Oceanogr 41:783–789

    Article  Google Scholar 

  • Engbrodt R, Kattner G (2005) On the biogeochemistry of dissolved carbohydrates in the Greenland Sea (Arctic). Org Geochem 36:937–948

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed  Google Scholar 

  • Hansen K, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley-VCH, Weiheim, pp 159–228

    Chapter  Google Scholar 

  • Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization of environmental samples. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin, Heidelberg, p 261

    Google Scholar 

  • Kirchman DL, K’nees E, Hodson RE (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    CAS  PubMed  Google Scholar 

  • Kirchman DL, Moran XAG, Ducklow H (2009) Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nature Rev Microbiol 7(6):451–459

    CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I 49:2163–2181

    Article  CAS  Google Scholar 

  • Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophysl Res-Oceans 114

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics In Arctic sea-ice during the spring algal bloom near Resolute, Nwt, Canada. Mar Ecol Prog Ser 111:121–127

    Article  Google Scholar 

  • Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Mar Ecol Prog Ser 248:1–13

    Article  CAS  Google Scholar 

  • Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296

    Article  Google Scholar 

  • Middelboe M, Lundsgaard C (2003) Microbial activity in the Greenland Sea: role of DOC lability, mineral nutrients and temperature. Aquat Microb Ecol 32(2):151–163

    Google Scholar 

  • Misic C, Castellano M, Fabiano M, Ruggieri N, Saggiomo V, Povero P (2006) Ectoenzymatic activity in surface waters: a transect from the Mediterranean Sea across the Indian Ocean to Australia. Deep-Sea Res I 53:1517–1532

    Article  CAS  Google Scholar 

  • Nausch M, Pollehne F, Kerstan E (1998) Extracellular enzyme activities in relation to hydrodynamics in the Pomeranian Bight (Southern Baltic Sea). Microb Ecol 36:251–258

    Article  CAS  PubMed  Google Scholar 

  • Parsons TR, Stephens K, Strickland JDH (1961) On the chemical composition of 11 species of marine phytoplankters. J Fish Res Board Can 18:1001–1016

    CAS  Google Scholar 

  • Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M, Pedrós-Alió C, Gasol JM (2006) Seasonal changes in bacterioplankton nutrient limitation and its effects on bacterial diversity in the NW Mediterranean Sea. Aquat Microb Ecol 44:241–252

    Article  Google Scholar 

  • Pomeroy LR, Macko SA, Ostrom PH, Dunphy J (1990) The microbial food web in Arctic seawater—concentration of dissolved free amino-acids and bacterial abundance and activity in the Arctic-Ocean and in Resolute Passage. Mar Ecol Prog Ser 61:31–40

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microb Ecol 42:1–14

    CAS  Google Scholar 

  • Reinthaler T, Winter C, Herndl GJ (2005) Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. App Environ Microbiol 71:2260–2266

    Article  CAS  Google Scholar 

  • Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL (1997) High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic Ocean. Deep-Sea Res I 44:1645–1663

    Article  CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances on the Mackenzie shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206

    Article  Google Scholar 

  • Rudels B, Fahrbach E, Meincke J, Budéus G, Eriksson P (2002) The east Greenland current and its contribution to the Denmark Strait overflow. ICES J Mar Sci 59:1133–1154

    Article  Google Scholar 

  • Rudels B, Bjork G, Nilsson J, Winsor P, Lake I, Nohr C (2005) The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition. J Mar Syst 55:1–30

    Article  Google Scholar 

  • Sala MM, Güde H (1999) Role of protozoans on the microbial ectoenzymatic activity during the degradation of macrophytes. Aquat Microb Ecol 20:75–82

    Article  Google Scholar 

  • Sala MM, Güde H (2004) Ectoenzymatic activities and heterotrophic bacteria decomposing detritus. Arch Hydrobiol 160:289–303

    Google Scholar 

  • Sala MM, Karner M, Arin L, Marrasé C (2001) Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquat Microb Ecol 23:301–311

    Article  Google Scholar 

  • Sala MM, Peters F, Gasol JM, Pedrós-Alió C, Marrasé C, Vaqué D (2002) Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the Northwestern Mediterranean. Aquat Microb Ecol 27:47–56

    Article  Google Scholar 

  • Sala MM, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005a) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21

    Article  CAS  Google Scholar 

  • Sala MM, Balagué V, Pedrós-Alió C, Massana R, Felipe J, Arin L, Illoul H, Estrada M (2005b) Phylogenetic and functional diversity of bacterioplankton during Alexandrium spp blooms. FEMS Microbiol Ecol 54:257–267

    Article  CAS  PubMed  Google Scholar 

  • Sala MM, Estrada M, Gasol JM (2006a) Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquat Microb Ecol 44:1–9

    Article  Google Scholar 

  • Sala MM, Pinhassi J, Gasol JM (2006b) Estimation of bacterial use of dissolved organic compounds (DON) in aquatic ecosystems using Biolog plates. Aquat Microb Ecol 42:1–5

    Article  Google Scholar 

  • Sala MM, Terrado R, Lovejoy C, Unrein F, Pedros-Alio C (2008) Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ Microbiol 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Foreman CM (2001) Activity profiles of bacterioplankton in a eutrophic river. Freshwat Biol 46:1239–1249

    Article  Google Scholar 

  • Smith DC, Azam F (1992) A simple economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34. doi:10.1029/2007GL029703

  • Tam L, Kevan PG, Trevors JT (2003) Viable bacterial biomass and functional diversity in fresh and marine waters in the Canadian Arctic. Polar Biol 26:287–294

    Google Scholar 

  • Tan TL, Rüger H-J (1999) Enrichment, isolation, and Biolog metabolic fingerprints of oligotrophic bacteria from the Antarctic Ocean. Arch Hydrobiol Spec Issues Advanc Limnol 54:255–272

    CAS  Google Scholar 

  • Taylor GT, Thunell R, Varela R, Benitez-Nelson C, Scranton MI (2009) Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles within the anoxic Cariaco Basin. Deep-Sea Res I 56:1266–1283

    Article  CAS  Google Scholar 

  • Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic-matter in Arctic multiyear sea-ice during winter—major components and relationship to ice characteristics. Polar Biol 15(7):477–483

    Article  Google Scholar 

  • Thomas DN, Kattner G, Engbrodt R, Giannelli V, Kennedy H, Haas C, Dieckmann GS (2001) Dissolved organic matter in Antarctic sea ice. Ann Glaciol 33:297–303

    Article  CAS  Google Scholar 

  • Tovar-Sánchez A, Duarte CM, Alonso JC, Lacorte S, Tauler R, Galbán-Malagón C (2010) Impacts of metals and nutrients released from melting multiyear Arctic sea ice. J Geophys Res. doi:10.1029/2009JC005685

  • Vaqué D, Guadayol Ò, Peters F, Felipe J, Angel-Ripoll L, Terrado R, Lovejoy C, Pedrós-Alió C (2008) Seasonal changes in planktonic bacterivory rates under the ice-covered coastal Arctic Ocean. Limnol Oceanogr 53:2427–2438

    Article  Google Scholar 

  • Vaqué D, Guadayol O, Peters F, Felipe J, Malits A, Pedrós-Alió C (2009) Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol 54:101–112

    Article  Google Scholar 

  • Vetter YA, Deming JW (1994) Extracellular enzyme-activity in the arctic northeast water polynya. Mar Ecol Prog Ser 114:23–34

    Article  CAS  Google Scholar 

  • Wang D, Henrichs SM, Guo LD (2006) Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Cont Shelf Res 26:1654–1667

    Article  Google Scholar 

  • Williams CJ, Jochem FJ (2006) Ectoenzyme kinetics in Florida Bay: implications for bacterial carbon source and nutrient status. Hydrobiologia 569:113–127

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of antarctic microbiology. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum Press, New York, pp 71–146

  • Yu Y, Li HR, Zeng YX, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  • Zhang JL, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505. doi:10.1029/2008GL034005

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Spanish Ministry of Science and Innovation (MICINN) projects: ATOS (POL2006-00550/CTM) to C.M.D, STORM (CTM2009-09352) to M.M.S, and MICROVIS (CTM2007-62140) to D.V.J.A.B. was awarded a Ph.D. fellowship by the MICINN (FPU grant). We sincerely thank our fellow scientists on board the R/V and the staff of UTM (CSIC), especially K. Llinás for his technical assistance, and also the crew of the R/V BIO-Hespérides for their collaboration and support during the cruise. We would like to acknowledge M. Álvarez and M. Galí for their fruitful discussions, and to three anonymous reviewers for their very helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Montserrat Sala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, M.M., Arrieta, J.M., Boras, J.A. et al. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33, 1683–1694 (2010). https://doi.org/10.1007/s00300-010-0808-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0808-x

Keywords

Navigation