Skip to main content
Log in

Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

During the last few years, extensive sea ice melting in the Arctic due to climate change has been detected, which could potentially modify the organic carbon fluxes in these waters. In this study, the effect of sea ice melting on bacterial carbon channelling by phages and protists has been evaluated in the northern Greenland Sea and Arctic Ocean. Grazing on bacteria by protists was evaluated using the FLB disappearance method. Lysis of bacteria due to viral infections was measured using the virus reduction approach. Losses of bacterial production caused by protists (PMMBP) dominated losses caused by viruses (VMMBP) throughout the study. Lysogenic viral production was detected in 7 out of 21 measurements and constituted from 33.9 to 100.0% of the total viral production. Significantly higher PMMBP and lower VMMBP were detected in waters affected by ice melting compared with unaffected waters. Consequently, significantly more bacterial carbon was channelled to the higher trophic levels in affected waters (13.05 ± 5.98 μgC l−1 day−1) than in unaffected waters (8.91 ± 8.33 μgC l−1 day−1). Viruses channelled 2.63 ± 2.45 μgC l−1 day−1 in affected waters and 4.27 ± 5.54 μgC l−1 day−1 in unaffected waters. We conclude that sea ice melting in the Arctic could modify the carbon flow through the microbial food web. This process may be especially important in the case of massive sea ice melting due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MR, Rivkin RB (2001) Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat Microb Ecol 25:195–206

    Article  Google Scholar 

  • Bonilla-Findji O, Malits A, Lefèvre D, Rochelle-Newall E, Lemée R, Weinbauer MG, Gattuso J-P (2008) Viral effects on bacterial respiration, production and growth efficiency: consistent trends in the Southern Ocean and the Mediterranean Sea. Deep Sea Res II 55:790–800

    Article  Google Scholar 

  • Boras JA, Sala MM, Vázquez-Domínguez E, Weinbauer MG, Vaqué D (2009) Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean). Environ Microbiol 11:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Boras JA, Sala MM, Baltar F, Arístegui J, Duarte CM, Vaqué D (2010) Effect of viruses and protists on bacteria in eddies of the Canary Current region (subtropical Northeast Atlantic). Limnol Oceanogr 55:885–898

    Article  Google Scholar 

  • Brussaard CPD (2004) Optimisation of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Chen C-TA, Liu K-K, Macdonald R (2003) Continental Margin Exchanges. In: Fasham MJR (ed) Ocean biogeochemistry—the role of the ocean carbon cycle in global change. Global change—the IGBP series. Springer, Berlin, pp 53–98

    Google Scholar 

  • Cuffey KM, Clow GD, Alley RB, Stuiver M, Waddington ED, Saltus EW (1995) Large Arctic temperature change at the Wisconsin-Holocene Glacial transition. Science 270:455–458

    Article  CAS  Google Scholar 

  • del Giorgio PA, Bird DF, Prairie YT, Planas D (1996) Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol Oceanogr 41:783–789

    Article  Google Scholar 

  • Duarte CM, Agustí S, Vaqué D, Agawin NSR, Felipe J, Casamayor EO, Gasol JM (2005) Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. Limnol Oceanogr 50:1844–1854

    Article  CAS  Google Scholar 

  • Evans C, Pearce I, Brussaard CPD (2009) Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol 11:2924–2934

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  CAS  PubMed  Google Scholar 

  • Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604

    Article  Google Scholar 

  • Garneau M-E, Roy S, Lovejoy C, Gratton Y, Vincent WF (2008) Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic. J Geophys Res. doi:10.1029/2007JC004281

  • González JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10

    Article  Google Scholar 

  • Gowing MM, Garrison DL, Gibson AH, Krupp JM, Jeffries MO, Fritsen CH (2004) Bacterial and viral abundance in Ross Sea summer pack ice communities. Mar Ecol Prog Ser 279:3–12

    Article  CAS  Google Scholar 

  • Guixa-Boixereu N (1997) Abundance and dynamic of viruses in planktonic ecosystems. Dissertation, University of Barcelona

  • Guixa-Boixereu N, Vaqué D, Gasol JM, Sánchez-Cámara J, Pedrós-Alió C (2002) Viral distribution and activity in Antarctic waters. Deep Sea Res II 49:827–845

    Article  Google Scholar 

  • Hansen K, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley-VCH, Weinheim, pp 159–228

    Chapter  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cycling ice rafting in the northeast Atlantic Ocean during the past 130, 000 years. Quaternary Res 29:142–152

    Article  Google Scholar 

  • Jiang SC, Paul JH (1996) Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142:27–38

    Article  Google Scholar 

  • Jiang SC, Paul JH (1998) Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb Ecol 35:235–243

    Article  PubMed  Google Scholar 

  • Kirchman D, K’nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 43:599–607

    Google Scholar 

  • Kirchman DL, Morán XAG, Ducklow H (2009) Microbial growth in the polar oceans–role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459

    CAS  PubMed  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I 49:2163–2181

    Article  CAS  Google Scholar 

  • Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volumen loss of the Arctic Ocean sea ice cover: 2003—2008. J Geophys Res. doi:10.1029/2009JC005312

  • Laurion I, Demers S, Vezina AE (1995) The microbial food web associated with the ice algal assemblage: biomass and bacterivory of nanoflagellate protozoans in Resolute Passage (High Canadian Arctic). Mar Ecol Prog Ser 120:77–87

    Article  Google Scholar 

  • Laybourn-Parry J, Hofer JS, Sommaruga R (2001) Viruses in the plankton of freshwater and saline Antarctic lakes. Freshw Biol 46:1279–1287

    Article  Google Scholar 

  • Laybourn-Parry J, Marshall WA, Madan NJ (2007) Viral dynamics and patterns of lysogeny in saline Antarctic lakes. Polar Biol 30:351–358

    Article  Google Scholar 

  • Lenski RE (1988) Dynamics if interactions between bacteria and virulent bacteriophage. Adv Microb Ecol 10:1–44

    CAS  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S-I, Nishibe Y (2002) Effect of heterotrophic nanoflagellates on the loss of virus-like particles in pond water. Ecol Res 17:473–479

    Article  Google Scholar 

  • Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar Ecol Prog Ser 111:121–127

    Article  Google Scholar 

  • Maranger R, del Giorgio PA, Bird DF (2002) Accumulation of damaged bacteria and viruses in lake water exposed to solar radiation. Aquat Microb Ecol 28:213–227

    Article  Google Scholar 

  • Marchant H, Davidson A, Wright S, Glazebrook J (2000) The distribution and abundance of viruses in the Southern Ocean during spring. Antarct Sci 12:414–417

    Article  Google Scholar 

  • Middelboe M, Lundsgaard C (2003) Microbial activity in the Greenland Sea: role of DOC lability, mineral nutrients and temperature. Aquat Microb Ecol 32:151–163

    Article  Google Scholar 

  • Middelboe M, Nielsen TG, Bjørnsen PK (2002) Viral and bacterial production in the North Water: in situ measurements, batch-culture experiments and characterization and distribution of a virus-host system. Deep Sea Res II 49:5063–5079

    Article  Google Scholar 

  • Miki T, Yamamura N (2005) Intraguild predation reduces bacterial species richness and loosens the viral loop in aquatic systems: ‘kill the killer of the winner’ hypothesis. Aquat Microb Ecol 40:1–12

    Article  Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Article  Google Scholar 

  • Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Weatherly JW, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett. doi:10.1029/2007GL031138

  • Nielsen TG, Hansen B (1995) Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. Mar Ecol Progr Ser 125:239–257

    Article  CAS  Google Scholar 

  • Payet JP, Suttle CA (2008) Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. J Mar Sys 74:933–945

    Article  Google Scholar 

  • Pfirman SL, Eicken H, Bauch D, Weeks WF (1995) The potential transport of pollutants by Arctic sea ice. Sci Total Environ 159:129–146

    Article  CAS  Google Scholar 

  • Sala MM, Terrado R, Lovejoy C, Unrein F, Pedrós-Alió C (2008) Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ Microbiol 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. doi:10.1007/s00300-010-0808-x

  • Salat J, Marrasé C (1994) Exponential and linear estimations of grazing on bacteria: effects of changes in the proportion of marked cells. Mar Ecol Prog Ser 104:205–209

    Article  Google Scholar 

  • Sherr BF, Sherr EB (2003) Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep Sea Res I 50:529–542

    Article  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the Central Arctic Ocean. Deep Sea Res II 44:1665–1682

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF, Wheeler PA, Thompson K (2003) Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep Sea Res I 50:557–571

    Article  Google Scholar 

  • Sieracki ME, Johnson PB, JMcN Sieburth (1985) Detection, enumeration and sizing of planktonic bacteria by image analyzed epifluorescence microscopy. Appl Environ Microbiol 49:799–810

    CAS  PubMed  Google Scholar 

  • Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Steele M, Ermold W, Zhang J (2008) Arctic Ocean surface warming trends over the past 100 years. Geophys Res Lett. doi: 10.1029/2007GL031651

  • Stein R, Macdonald RW (2004) Organic carbon budget: Arctic Ocean vs. Global Ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 315–322

    Google Scholar 

  • Steward GF, Smith DC, Azam F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131:287–300

    Article  Google Scholar 

  • Steward GF, Fandino LB, Hollibaugh JT, Whitledge TE, Azam F (2007) Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean. Deep Sea Res I 54:1744–1757

    Article  Google Scholar 

  • Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. EOS 89:13–20

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Vaqué D, Gasol JM, Marrasé C (1994) Grazing rates on bacteria: the significance of methodology and ecological factors. Mar Ecol Prog Ser 109:263–274

    Article  Google Scholar 

  • Vaqué D, Calderón-Paz JI, Guixa-Boixereu N, Pedrós-Alió C (2002) Spatial distribution of microbial biomass and activity (bacterivory and bacterial production) in the northern Weddell Sea during the austral summer (January 1994). Aquat Microb Ecol 29:107–121

    Article  Google Scholar 

  • Vaqué D, Agustí S, Duarte CM (2004) Response of bacterial grazing rates to experimental manipulation of an Antarctic coastal nanoflagellate community. Aquat Microb Ecol 36:41–52

    Article  Google Scholar 

  • Vaqué D, Guadayol Ã’, Peters F, Felipe J, Angel-Ripoll L, Terrado R, Lovejoy C, Pedrós-Alió C (2008) Seasonal changes in planktonic bacterivory rates under the ice-covered coastal Arctic Ocean. Limnol Oceanogr 53:2427–2438

    Article  Google Scholar 

  • Vaqué D, Guadayol Ã’, Peters F, Felipe J, Malits A, Pedrós-Alió C (2009) Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol 54:101–112

    Article  Google Scholar 

  • Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225

    Article  Google Scholar 

  • Weinbauer MG, Winter C, Höfle MG (2002) Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat Microb Ecol 27:103–110

    Article  Google Scholar 

  • Weinbauer MG, Brettar I, Höfle MG (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr 48:1457–1465

    Article  Google Scholar 

  • Weinbauer MG, Hornák K, Jezbera J, Nedoma J, Dolan JR, Å imek K (2007) Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol 9:777–788

    Article  CAS  PubMed  Google Scholar 

  • Wells LE, Deming JW (2006) Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat Microb Ecol 43:209–221

    Article  Google Scholar 

  • Wheeler PA, Gosselin M, Sherr E, Thibault D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    Article  CAS  Google Scholar 

  • Wilhelm SW, Brigden SM, Suttle CA (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb Ecol 43:168–173

    Article  CAS  PubMed  Google Scholar 

  • Winget DM, Williamson KE, Helton RR, Wommack KE (2005) Tangential flow diafiltration: an improved technique for estimation of virioplankton production. Aquat Microb Ecol 41:221–232

    Article  Google Scholar 

  • Winter C, Herndl GJ, Weinbauer MG (2004) Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat Microb Ecol 35:207–216

    Article  Google Scholar 

  • Yager PL, Connelly TL, Mortazavi B, Wommack KE, Bano N, Bauer JE, Opsahl S, Hollibaugh JT (2001) Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol Oceanogr 46:790–801

    Article  CAS  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton, chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231

    CAS  Google Scholar 

  • Zhang J, Steele M, Lindsay R, Schweiger A, Morison J (2008) Ensemble 1-Year predictions of Arctic sea ice for the spring and summer 2008. Geophys Res Lett. doi:10.1029/2008GL033244

Download references

Acknowledgments

We are very grateful to the staff of UTM (CSIC) and the crew of the R/V—Hespérides for their help during the cruise. This study was supported by the following projects: ATOS, PROCAVIR and MICROVIS (POL2006-00550/CTM, CTM2004-04404-CO2-00/MAR, CTM2007-62140) funded by the Spanish Ministerio de Ciencia e Innovación and by the E.U. project Arctic Tipping Points (ATP, contract #226248) in the framework FP7. J. A. B.’s work was supported by a Ph.D. fellowship from the Spanish Ministerio de Ciencia e Innovación (FPU grant) and M. M. S. by I3P-CSIC postdoctoral contract funded by the Fondo Social Europeo. This is a contribution to the European Network of Excellence EurOceans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Boras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boras, J.A., Sala, M.M., Arrieta, J.M. et al. Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. Polar Biol 33, 1695–1707 (2010). https://doi.org/10.1007/s00300-010-0798-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0798-8

Keywords

Navigation