Skip to main content
Log in

Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Chaenocephalus aceratus is one of the most abundant Antarctic icefish species in the Atlantic sector and has been a by-catch species in the fishery for mackerel icefish, Champsocephalus gunnari, between the mid-1970s and mid-1980s at South Georgia, South Orkney, and South Shetland Islands. The species became the target of the fishery in particular seasons, such as at South Georgia in 1977/78. In our paper, we report results on genetic differentiation for 11 microsatellite loci in C. aceratus samples collected at the South Shetlands and Elephant Island. This study represents the first report on microsatellite variability of an icefish species. Our results support the evidence from previous studies on differences in infestation patterns of parasites that a single panmictic population of C. aceratus exists, spanning the two sampling sites separated by about 100 km. Moreover, our study indicates the presence of a significant genetic differentiation between individual year-classes pointing out the existence of dynamic processes acting at the population genetic level, according to recent results for broadly distributed marine species. Both small effective population size and immigration from unsampled differentiated stocks may be at the base of the differentiation found in C. aceratus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balloux F (2001) EASYPOP (Version 1.7) a computer program for the simulation of population genetics. J Hered 92:301–302

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) Genetix 402, logiciel sous Windows TM pour la génétique des populations Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Brown BL, Epifanio JM, Smouse PE, Glazer RA (1996) Temporal stability of mtDNA haplotype frequencies in American shad stocks: to pool or not to pool across years? Can J Fish Aquat Sci 53:2274–2283

    Article  Google Scholar 

  • Carvalho GR, Hauser L (1998) Advances in the molecular analysis of fish population structure. Ital J Zool 65:21–33

    Google Scholar 

  • Chapman RW, Ball AO, Mash LR (2002) Spatial homogeneity and temporal heterogeneity of red drum, Sciaenops ocellatus, microsatellites: effective population sizes and management implications. Mar Biotech 4:589–6032

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Jones CD, Kim S, North AW, Thurber A, Vacchi M (2005) Nesting behavior of the icefish Chaenocephalus aceratus at Bouvetøya Island, Southern Ocean. Polar Biol 28:828–832

    Article  Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer MB (1994) Mutational process of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Everson I (1980) Methodes de determination de l’age chez les poissons antartiques. Cybium Ser 3(11):41–59

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858

    Article  PubMed  CAS  Google Scholar 

  • Gubsch G (1980) Untersuchungen zur Altersbestimmung und zum Wachstum beim Eisfisch Chaenocephalus aceratus Lönnberg. Fischerei Forsch 18:7–10

    Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Hedgecock D, Chow V, Waples RE (1992) Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture 108:215–232

    Article  Google Scholar 

  • Hedgecock D, Launey S, Pudovkin AI, Naciri Y, Lapègue S, Bonhomme F (2007) Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar Biol 150:1173–1182

    Article  Google Scholar 

  • ICES Annual Report for (2005) Aberdeen. Available at http: //www.ices.dk

  • Iwami T, Kock KH (1990) Channichthyidae. In: Gon O, Hemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 381–399

    Google Scholar 

  • Jørgensen HA, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring Clupea harengus in the Baltic Sea. Mol Ecol 14:3219–3234

    Article  PubMed  CAS  Google Scholar 

  • Kock KH (1981) Fischereibiologische Untersuchungen an drei antarktischen Fischarten: Champsocephalus gunnari Lönnberg 1905, Chaenocephalus aceratus (Lönnberg, 1906) und Pseudochaenichthys georgianus Norman 1937 (Notothenioidei, Channichthyidae). Mitt Inst Seefisch Hamb 32:1–226

    Google Scholar 

  • Kock KH (1986) The state of exploited Antarctic fish stocks in the Scotia Arc region during SIBEX (1983–1985). Arch Fisch Wiss 37(Beiheft 1):129–186

    Google Scholar 

  • Kock KH (1991) The state of exploited fish stocks in the Southern Ocean—a review. Arch Fisch Wiss 41:1–66

    Google Scholar 

  • Kock KH (2000) Understanding CCAMLR’s approach to management. Available at: www.ccamlr.org

  • Kock KH (2005a) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part II. Polar Biol 28(12):897–909

    Article  Google Scholar 

  • Kock KH (2005b) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biol 28(11):862–895

    Article  Google Scholar 

  • Kock KH, Jones CD (2005) Fish stocks in the southern Scotia Arc region—a review and prospects for future research. Rev Fish Res 13:75–108

    Article  Google Scholar 

  • Kock KH, Kellermann A (1991) Reproduction in Antarctic notothenioid fish—a review. Antarct Sci 3:125–150

    Google Scholar 

  • Kock KH, Möller H (1977) On the occurence of the parasitic copepod Eubrachiella antartica on some Antarctic fish. Arch Fisch Wiss 28:149–156

    Google Scholar 

  • Kock KH, Stransky C (2000) The composition of the coastal fish fauna around Elephant Island (South Shetland Islands, Antarctica). Polar Biol 23:825–832

    Article  Google Scholar 

  • Kock KH, Jones CD, Wilhelms S (2000) Biological characteristics of Antarctic fish stocks in the southern Scotia Arc region. CCAMLR Sci 7:1–41

    Google Scholar 

  • Kock KH, Jones CD, Appel J, von Bertouch G, Doolittle DF, La Mesa M, Pshenichnov L, Riehl R, Romeo T, Schöling S, Zane L (2002) Standing stock estimates of finfish biomass from the 2002 Polarstern bottom trawl survey around Elephant Island and the South Shetland Islands (Subarea 48.1) with some notes on the composition of catches taken north of Joinville Island—D’Urville Island. WG-FSA-02/24, CCAMLR, Hobart, Australia

    Google Scholar 

  • Kompowski A (1990) Studies on the composition of the stock of Chaenocephalus aceratus (Lönnberg, 1906), Pisces, Channichthyidae, in the region of South Georgia and South Shetlands. Acta Ichthyol Piscat 20:29–44

    Google Scholar 

  • Kompowski A (1994) Changes in the blackfin icefish stock structure, Chaenocephalus aceratus (Lönnberg, 1906), Pisces, Notothenioidei, Channichthyidae) off South Georgia within 1975–1992. Acta Ichthyol Piscat 24(2):53–60

    Google Scholar 

  • Kornfield IL, Sidell BD, Gagnon PS (1982) Stock definition in Atlantic herring (Clupea harengus harengus): Genetic evidence for discrete fall and spring spawning populations. Can J Fish Aquat Sci 39:1610–1621

    Google Scholar 

  • La Mesa M, Ashford J, Larson E, Vacchi M (2004) Age and growth of Scotia Sea icefish, Chaenocephalus aceratus, from the South Shetland Islands. Antarct Sci 16(3):253–262

    Article  Google Scholar 

  • La Mesa M, Vacchi M (2001) Age and growth in high Antarctic notothenioid fish. Antarct Sci 13:227–234

    Article  Google Scholar 

  • Lacson JM, Morizot DC (1991) Temporal genetic variation in subpopulations of bicolor damselfish (Stegastes partitus) inhabiting coral reefs in the Florida Keys. Mar Biol 110:353–357

    Article  Google Scholar 

  • Laikre L, Miller LM, Palmé A, Palm S, Kapuscinski AR, Thoresson G, Ryman N (2005) Spatial genetic structure of northern pike (Esox lucius) in the Baltic Sea. Mol Ecol 14(7):1955–1964

    Article  PubMed  CAS  Google Scholar 

  • Laurent V, Planes S (2007) Effective population size estimation on Sardina pilchardus in the Bay of Biscay using a temporal genetic approach. Biol J Linnean Soc 90:591–602

    Article  Google Scholar 

  • Lenfant P, Planes S (2002) Temporal genetic changes between cohorts in a natural population of a marine fish, Diplodus sargus. Biol J Linnean Soc 76:9–20

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from alleles frequencies data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • North AW (1988) Age of Antarctic fish: validation of the timing of annuli formation in otoliths and scales. Cybium 12:107–114

    Google Scholar 

  • Otha T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Gen Res 22:201–204

    Article  Google Scholar 

  • Papetti C, Zane L, Patarnello T (2006) Isolation and characterization of microsatellite loci in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae). Mol Ecol Notes 6(1):207–209

    Article  CAS  Google Scholar 

  • Patwary MU, Kenchington El, Bird CJ, Zouros E (1994) The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J Shellfish Res 13(2):547–553

    Google Scholar 

  • Planes S, Lenfant P (2002) Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol Ecol 11:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Poulsen NA, Nielsen EE, Schierup MH, Loeschcke V, Grønkjær P (2006) Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol Ecol 15:321–331

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop Version 12: population genetics software for exact tests and ecumenism. J Hered 86:248–249

    Google Scholar 

  • Reilly A, Ward RD (1999) Microsatellite loci to determine stock structure of the Patagonian toothfish Dissostichus eleginoides. Mol Ecol 8(10):1753–1754

    Article  PubMed  CAS  Google Scholar 

  • Rice RW (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ruzzante DE, Taggart CT, Cook D (1996) Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: cohort contribution and genetic stability. Can J Fish Aquat Sci 53:2695–27056

    Article  Google Scholar 

  • Ruzzante DE, Taggart CT, Cook D, Goddard SV (1997) Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: a test, and evidence of temporal stability. Can J Fish Aquat Sci 54:2700–2708

    Article  Google Scholar 

  • Ruzzante DE, Mariani S, Bekkevold D, André C, Mosegaard H, Clausen LAW, Dahlgren T, Hutchinson WF, Hatfield EMC, Torstensen E, Brigham J, Simmonds EJ, Laikre L, Larsson LC, Stet RJM, Ryman N, Carvalho GR (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc R Soc Lond. doi:10.1098/rspb.2005.3463

  • Shaklee JB, Bentzen P (1998) Genetic identification of stocks of marine fish and shellfish. Bull Mar Sci 62:589–621

    Google Scholar 

  • Siegel V (1980) Quantitative investigations on parasites of Antarctic channichthyid and nototheniid fishes. Meeresforschung 28:146–156

    Google Scholar 

  • Smith P, McVeagh M (2000) Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. J Fish Biol 57(Suppl A):72–83

    Article  CAS  Google Scholar 

  • Sosinski J, Janusz J (2000) Infection variability of the parasitic copepod Eubrachiella antarctica (Quidor, 1906) on fishes in the Atlantic sector of the Antarctic. Bull Sea Fish Inst 2:25–42

    Google Scholar 

  • Susana E, Papetti C, Barbisan F, Bortolotto E, Buccoli S, Patarnello T, Zane L (2007) Isolation and characterization of eight microsatellite loci in the icefish Chaenocephalus aceratus (Perciformes, Notothenioidei, Channichthyidae). Mol Ecol Notes. doi:10.1111/j.1471-8286.2007.01703.x

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt JKJ, Hellemans B, Van de Putte A, Koubbi P, Volckaert FAM (2006) Isolation and multiplex analysis of six polymorphic microsatellites in the Antarctic notothenioid fish, Trematomus newnesi. Mol Ecol Notes 6:157–159

    Article  CAS  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15(6):1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Ward RD, Woodward M, Skibinsky DOF (1994) A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J Fish Biol 44:213–232

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Antarctic Research Program (PNRA). We thank Alfred Wegener Institut für Polar- und Meeresforschung that provided us the opportunity to collect samples during “ANT-XIX IV 2002” Polarstern cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papetti, C., Susana, E., La Mesa, M. et al. Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island. Polar Biol 30, 1605–1613 (2007). https://doi.org/10.1007/s00300-007-0325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0325-8

Keywords

Navigation