Skip to main content
Log in

Geographic variation in the immunoglobulin levels in pygoscelid penguins

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic organisms, including penguins, are susceptible to parasites and pathogens. Effects of infestation could differ in different locations along a geographical gradient from north to south consistent with conditions that affect the prevalence and virulence of parasites and pathogens. The immune system, including immunoglobulins as the main component of the humoral immune response, is the major way by which organisms confront infestation. We investigated the variation in immunoglobulin levels in three species of antarctic penguins (Pygoscelis antarctica, Pygoscelis papua, and Pygoscelis adeliae) along a geographical gradient from King George Island (62°15′S) to Avian Island (67°46′S). We found that immunoglobulin levels increased northwards in all the three species. This could indicate a higher impact of parasites and/or pathogens relative to the existing gradient in temperatures along this coast. Changing temperatures, consistent with global climate change, could be altering the ecology of parasite or pathogen infestation within the biota of northern Antarctica. We have also found marginal differences in immunoglobulin levels between sexes in both chinstrap and gentoo penguins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbosa A, Moreno E (2002) Sex differences in t-cell-mediated immune response in wintering great tits Parus major. Avian Sci 2:99–102

    Google Scholar 

  • Barbosa A, Moreno E (2004) Cell-mediated immune response affects food intake but no body mass: an experiment with wintering great tits. Ecoscience 11:305–309

    Google Scholar 

  • Bennett GF, Squires-Parsons D, Siikamäki P, Huhta E, Allander K, Hillström L (1995) A comparison of the blood parasites of three Fenno-Scandian populations of the pied flycatcher Ficedula hypoleuca. J Avian Biol 26:33–38

    Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    Article  CAS  PubMed  Google Scholar 

  • Boutette JB, Ramsay EC, Potgieter LND, Kania SA (2002) An improved polymerase chain reaction-restriction fragment length polymorphism assay for gender identification in birds. J Avian Med Surg 16:198–202

    Article  Google Scholar 

  • Chapell MA, Souza SL (1988) Thermoregulation, gas exchange, and ventilation in Adelie penguins (Pygoscelis adeliae). J Comp Physiol B 157:783–790

    Article  Google Scholar 

  • Clayton DH, Moore J (1997) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford

    Google Scholar 

  • Dupas S, Boscaro R (1999) Geographic variation and evolution of immunosuppressive genes in a Drosophila parasitoid. Ecography 22:284–291

    Article  Google Scholar 

  • Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc R Soc Lond B 263:1635–1641

    CAS  Google Scholar 

  • Fellowes MDE, Godfray HCJ (2000) The evolutionary ecology of resistance to parasitoids by Drosophila. Heredity 84:1–8

    Article  PubMed  Google Scholar 

  • Gardner H, Kerry K, Riddle M, Brouwer S, Gleeson L (1997) Poultry virus infection in Antarctic penguins. Nature 387:245

    Article  CAS  PubMed  Google Scholar 

  • Gauthier-Clerc M, Eterradossi N, Toquin D, Guittet M, Kuntz G, Le Maho Y (2002) Serological survey of the king penguin, Aptenodytes patagonicus, in Crozet archipelago for antibodies to infectious bursal disease influenza A and Newcastle disease viruses. Polar Biol 25:316–319

    Google Scholar 

  • Grasman KA (2002) Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol 42:34–42

    Article  CAS  Google Scholar 

  • Grossman CJ (1984) Regulation of immune system by sex steroids. Endocr Rev 5:435–455

    CAS  PubMed  Google Scholar 

  • Gustaffson L, Nordling D, Andersson MS, Sheldon BC, Qvarstrom A (1994) Infectious diseases, reproductive effort and the cost of reproduction in birds. Phil Trans R Soc Lond B 346:323–331

    Google Scholar 

  • Johnsen TS, Zuk M (1999) Parasites and tradeoffs in the immune response of female red jungle fowl. Oikos 86:487–492

    Google Scholar 

  • Jones HI, Shellam GR (1999) The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 21:5–10

    Article  Google Scholar 

  • Kerry K, Riddle M, Clarke K (1999) Diseases of Antarctic wildlife. A report for SCAR and COMNAP. SCAR

  • King JC, Turner J, Marshall GJ, Connolley WM, Lachlan-Cope TA (2003) Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records. AGU Antarct Res Ser 79:17–30

    Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1999) Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am Nat 153:S61–S74

    Article  Google Scholar 

  • Lindgren E (1998) Climate change, tick-borne encephalitis and vaccination needs in Sweden—a prediction model. Ecol Modell 110:55–63

    Article  Google Scholar 

  • Lindgren E, Talleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123

    CAS  PubMed  Google Scholar 

  • Martínez J, Tomás G, Merino S, Arriero E, Moreno J (2003) Detection of serum immunoglobulins in wild birds by direct ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct Ecol 17:700–706

    Article  Google Scholar 

  • McGraw KJ, Ardia DR (2005) Sex differences in carotenoid status and immune performance in zebra finches. Evol Ecol Res 7:251–262

    Google Scholar 

  • Meloni S, Mazzini M, Buonocore F, Scapigliati G (2000) Humoral immunity in Antarctic fish: serum immunoglobulin analysis in seven species and antigen-induced response in Trematomus bernacchii (Teleostea, Notothenioidea). Ital J Zool 67:79–83

    Article  CAS  Google Scholar 

  • Merila J, Björklund M, Bennett GF (1995) Geographic and individual variation in haematozoan infections in the greenfinch, Carduelis chloris. Can J Zool 73:1798–1804

    Article  Google Scholar 

  • Merino S, Barbosa A, Moreno J, Potti J (1997) Absence of haematozoa in a wild chinstrap penguin Pygoscelis antarctica population. Polar Biol 18:227–228

    Article  Google Scholar 

  • Merino S, Martínez J, Møller AP, Sanabria L, de Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219–222

    Article  PubMed  Google Scholar 

  • Møller AP (1998) Evidence of larger impact of parasites on host in the tropics: investment in immune function within and outside tropics. Oikos 82:265–270

    Article  Google Scholar 

  • Møller AP (2002) North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine birds. J Anim Ecol 71:201–210

    Article  Google Scholar 

  • Møller AP, Erritzoe J (1998) Host immune defence and migration in birds. Evol Ecol 12:945–953

    Article  Google Scholar 

  • Møller AP, Erritzoe J (2001) Dispersal, vaccination and regression of immune defence organs. Ecol Lett 4:484–490

    Article  Google Scholar 

  • Møller AP, Erritzoe J (2002) Coevolution of host immune defence and parasite-induced mortality: relative spleen size and mortality in altricial birds. Oikos 99:95–100

    Article  Google Scholar 

  • Møller AP, Erritzoe J (2003) Climate, body condition and spleen size in birds. Oecologia 442:621–626

    Article  Google Scholar 

  • Møller AP, Sorci G, Erritzoe J (1998) Sexual dimorphism in immune defense. Am Nat 152:605–619

    Article  PubMed  Google Scholar 

  • Møller AP, Merino S, Brown CR, Robertson RJ (2001) Immune defense and host sociality: a comparative study or swallows and martins. Am Nat 158:136–145

    Article  PubMed  Google Scholar 

  • Morales J, Moreno J, Merino S, Tomás G, Martínez J, Garamszegi LZ (2004) Associations between immune parameters, parasitism, and stress in breeding pied flycatcher (Ficedula hypoleuca) females. Can J Zool 82:1484–1492

    Article  Google Scholar 

  • Moreno J, de León A, Fargallo JA, Moreno E (1998) Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115:312–319

    Article  Google Scholar 

  • Moreno J, Potti J, Yorio P, Garcia Borboroglu P (2001) Sex differences in cell-mediated immunity in the magellanic penguin Spheniscus magellanicus. Ann Zool Fenn 38:111–116

    Google Scholar 

  • Nunn CL (2002) Spleen size, disease risk and sexual selection: a comparative study in primates. Evol Ecol Res 4:91–107

    Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2000) Promiscuity and the primate immune system. Science Wash 290:1168–1170

    Article  CAS  Google Scholar 

  • Olson JJ (2002) Antarctica: a review of recent medical research. Trends Pharmacol Sci 23:487–490

    Article  PubMed  Google Scholar 

  • Ots I, Horak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116:441–448

    Article  Google Scholar 

  • Ots I, Kerimov AB, Ivankina EV, Ilyina TA, Horak P (2001) Immune challenge affects basal metabolic activity in wintering great tits. Proc R Soc Lond B 268:1175–1181

    Article  CAS  Google Scholar 

  • Pastoret P, Gabriel P, Bazin H, Govaerts A (1998) Handbook of vertebrate immunology. Academic, San Diego

    Google Scholar 

  • Potti J, Moreno J, Yorio P, Briones V, Garcia-Borboroglu P, Villar S, Ballesteros C (2002) Bacteria divert resources from growth for magellanic penguin chicks. Ecol Lett 5:709–714

    Article  Google Scholar 

  • Raberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641

    Article  CAS  Google Scholar 

  • Raberg L, Nilsson JA, Ilmonen P, Stjernman M, Hasselquist D (2000) The cost of an immune response: vaccination reduces parental effort. Ecol Lett 3:382–386

    Article  Google Scholar 

  • Redig PT, Lawler EM, Schwartz S, Dunnette JL, Stephenson B, Duke GE (1991) Effects of chronic exposure to sublethal concentrations of lead acetate on heme synthesis and immune function in red-tailed hawks. Arch Environ Contam Toxicol 21:72–77

    Article  CAS  PubMed  Google Scholar 

  • Roitt I, Brostoff J, Male D (1996) Immunology. Mosby, London

    Google Scholar 

  • Saino N, Martinelli R, Møller AP (2001) Immunoglobulin plasma concentration in relation to egg laying and mate ornamentation of female barn swallows (Hirundo rustica). J Evol Biol 14:95–109

    Article  CAS  Google Scholar 

  • Sladen WJL (1954) Penguin in the wild and in captivity. Avic Mag 60:132–142

    Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohemagglutinin skin testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R, Vandesande F, Eens M (2004) Heavy metal exposure affects the humoral immune response in a free-living small songbird, the Great Tit (Parus major). Arch Environ Contam Toxicol 46:399–404

    Article  CAS  PubMed  Google Scholar 

  • Sol D, Jovani R, Torres J (2000) Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23:307–314

    Article  Google Scholar 

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948

    Article  CAS  PubMed  Google Scholar 

  • Szep T, Møller AP (1999) Cost of parasitism and host immune defence in the sand martin Riparia riparia: a role for parent–offspring conflict? Oecologia 119:9–15

    Article  Google Scholar 

  • Taylor JRE (1985) Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks. J Comp Physiol 155B:615–627

    Google Scholar 

  • Tella JL, Scheuerlein A, Ricklefs RE (2002) Is cell mediated immunity related to the evolution of life-history strategies in birds? Proc R Soc Lond B 269:1059–1066

    Article  Google Scholar 

  • Terres G, Morrison SL, Habricht GS (1968) A quantitative difference in the immune response between male and female mice. Proc Soc Exp Biol Med 47:273

    Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2004) The SCAR READER project: toward a high-quality database of mean Antarctic meteorological observations. J Clim 17:2890–2898

    Article  Google Scholar 

  • Wakelin D, Apanius V (1997) Immune defence: genetic control. In: Clayton DH, Moore J (eds) Host–parasite evolution. General principles and avian models. Oxford University Press, Oxford, pp 30–58

    Google Scholar 

  • Wikel SK (1996) The immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, UK

    Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This study has been funded by the Acción Especial project REN2001-5004/ANT of the Spanish Ministry of Education and Science. The project CGL2004-01348/ANT supported AB while the paper was written. We very much appreciated the hospitality and logistic support of the Spanish Antarctic Bases “Juan Carlos I,” “Gabriel de Castilla” and the Spanish Polar Ship “Hesperides” and specially the Spanish Polar Ship “Las Palmas” which provided us the logistic support and transport to the localities. We thank Elena Arriero and Rafa Barrientos for laboratory assistance with molecular sexing. We also thank two anonymous referees for their comments that improved early versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, A., Merino, S., Benzal, J. et al. Geographic variation in the immunoglobulin levels in pygoscelid penguins. Polar Biol 30, 219–225 (2007). https://doi.org/10.1007/s00300-006-0175-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0175-9

Keywords

Navigation