Skip to main content
Log in

Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety.

Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35–65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15–76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19–26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6’s role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for Arsenic. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Book  Google Scholar 

  • Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci U S A 107:5214–5219

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML (2003) Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol 193:1–8

    Article  PubMed  CAS  Google Scholar 

  • Barberon M, Geldner N (2014) Radial transport of nutrients: The plant root as a polarized epithelium1. Plant Physiol 166:528–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Bednar AJ, Garbarino JR, Ranville JF, Wildeman TR (2002) Presence of organoarsenicals used in cotton production in agricultural water and soil of the Southern United States. J Agric Food Chem 50:7340–7344

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138

    Article  ADS  PubMed  CAS  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  PubMed  CAS  Google Scholar 

  • Chung JY, Do YuS, Hong YS (2014) Environmental source of arsenic exposure. J Prevent Med Public Health 47:253

    Article  Google Scholar 

  • Danielson JÅH, Johanson U (2008) Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:1–15

    Article  Google Scholar 

  • Feng Ma J, Yamaji N, Mitani N, Xu X-Y, Su Y-H, Mcgrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  ADS  Google Scholar 

  • Fetter K, van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks R, Tong Y, Davies TGE, Leggewie G (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3144

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Zi YW, Lin H, Wei EC, Chen J, Liu M, Zhang LC, Li JQ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  PubMed  CAS  Google Scholar 

  • Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62(1):305–323

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3(5):824–834

    Article  PubMed  CAS  Google Scholar 

  • Hong Y-S, Song K-H, Chung J-Y (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47:245–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Huhmann BL, Harvey CF, Uddin A, Choudhury I, Ahmed KM, Duxbury JM, Bostick BC, van Geen A, Sci E, Author T (2017) Field study of rice yield diminished by soil arsenic in Bangladesh HHS Public Access Author manuscript. Environ Sci Technol 51:11553–11560

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Jian FM, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  ADS  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    Article  PubMed  CAS  Google Scholar 

  • Karagas MR, Punshon T, Davis M, Bulka CM, Slaughter F, Karalis D, Argos M, Ahsan H (2019) Rice intake and emerging concerns on arsenic in rice: a review of the human evidence and methodologic challenges. Curr Environ Health Rep 6:361

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198

    Article  PubMed  CAS  Google Scholar 

  • Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13

    Article  PubMed  CAS  Google Scholar 

  • Lindsay ER, Maathuis FJM (2016) Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Lett 590:779–786

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ma C, Chhikara S, Minocha R, Long S, Musante C, White JC, Xing B, Dhankher OP (2015) Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-Glutamylcysteine synthase. Environ Sci Technol 49:10117–10126

    Article  ADS  PubMed  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meselhy AG, Sharma S, Guo Z, Singh G, Yuan H, Tripathi RD, Xing B, Musante C, White JC, Dhankher OP (2021) Nanoscale sulfur improves plant growth and reduces arsenic toxicity and accumulation in rice (Oryza sativa L.). Environ Sci Technol 55:13490–13503

    Article  ADS  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  PubMed  CAS  Google Scholar 

  • Mitra P, Loqué P (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J vis Exp 87:51381

    Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  ADS  PubMed  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6:21640. https://doi.org/10.1038/srep21640

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Muehe EM, Wang T, Kerl CF, Planer-Friedrich B, Fendorf S (2019) Rice production threatened by coupled stresses of climate and soil arsenic. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  • Østergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  Google Scholar 

  • Paulose B, Chhikara S, Coomey J, Jung H, il, Vatamaniuk O, Dhankher OP, (2013) A γ-Glutamyl cyclotransferase protects arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25:4580–4595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD (2015) Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J 9:1693–1699

    Article  PubMed  Google Scholar 

  • Rossman TG, Uddin AN, Burns FJ (2004) Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol 198:394–404

    Article  PubMed  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, Matsumoto T, Kitagawa Y (2011) Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant Cell Environ 34:1150–1163

    Article  PubMed  CAS  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37:839–846

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74(6):289–299

    Article  PubMed  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Sun SK, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao FJ (2018) Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol 219:641–653

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Z, Zhao FJ (2020) The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Crit Rev Environ Sci Technol 51:2449–2484

    Article  Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579:4417–4422

    Article  PubMed  CAS  Google Scholar 

  • Ueno D, Yamaji N, Ma JF (2009) Further characterization of ferric – phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. J Exp Bot 60:3513–3520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullrich-eberius CI, Sanz A, Novacky AJ (1989) Evaluation of Arsenate- and Vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  PubMed  CAS  Google Scholar 

  • Yaneff A, Sigaut L, Marquez M, Alleva K, Pietrasanta LI, Amodeo G (2014) Heteromerization of PIP aquaporins affects their intrinsic permeability. Proc Natl Acad Sci U S A 111:231–236

    Article  ADS  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  PubMed  CAS  Google Scholar 

  • Zelazny E, Borst JW, Lanie Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci U S A 104:12359–12364

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the United States Department of Agriculture grant (USDA-NIFA-AFRI 2017-67013-26165) to OPD. The research support from the Cultural and Educational Bureau of the Egyptian Embassy, Washington DC (reference No: GM-1054) to AGM is also acknowledged. OPD also acknowledge the partial financial support from the USDA Hatch fund (MS #578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Parkash Dhankher.

Additional information

Communicated by Manoj Prasad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 802 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meselhy, A.G., Mosa, K., Chhikara, S. et al. Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.). Plant Cell Rep 43, 64 (2024). https://doi.org/10.1007/s00299-024-03157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03157-3

Keywords

Navigation