Skip to main content
Log in

Identification and promoter analysis of a GA-stimulated transcript 1 gene from Jatropha curcas

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of JcGAST1 promotes plant growth but inhibits pistil development. The pyrimidine box and CGTCA motif of the JcGAST1 promoter were responsible for the GA and MeJA responses.

Abstract

Members of the gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in plant growth and development, particularly in flower induction and seed development. However, there is still relatively limited knowledge of GASA genes in Jatropha curcas. Herein, we identified a GASA family gene from Jatropha curcas, namely, JcGAST1, which encodes a protein containing a conserved GASA domain. Sequence alignment showed that the JcGAST1 protein shares 76% sequence identity and 80% sequence similarity with SlGAST1. JcGAST1 had higher expression and protein levels in the female flowers than in the male flowers. Overexpression of JcGAST1 in tobacco promotes plant growth but inhibits pistil development. JcGAST1 expression was upregulated by GA and downregulated by MeJA. Promoter analysis indicated that the pyrimidine box and CGTCA motif were the GA- and MeJA-responsive elements of the JcGAST1 promoter. Using a Y1H screen, six transcription factors were found to interact with the pyrimidine box, and three transcription factors were found to interact with the CGTCA motif. Overall, the results of this study improve our understanding of the JcGAST1 gene and provide useful information for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary Files.

References

  • Ahmad MZ, Sana A, Jamil A, Nasir JA, Ahmed S, Hameed MU, Abdullah (2019) A genome-wide approach to the comprehensive analysis of GASA gene family in Glycine max. Plant Mol Biol 100:607–620

    Article  CAS  PubMed  Google Scholar 

  • Ali MS, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21:621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta NK, Gupta S, Schramm C, Anderson P, Jenkins CLD, Soole KL, Langridge P, Shavrukov Y (2021) Expression of specific alleles of Zinc-Finger transcription factors, HvSAP8 and HvSAP16, and corresponding SNP markers, are associated with drought tolerance in barley populations. Int J Mol Sci 22:12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Hua C, Shen L, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62:118–131

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nissan G, Weiss D (1996) The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol 32:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Wang DX, Liu C, Wang MZ, Wang T, Zhao Q, Yu JJ (2012) Maize transcription factor Zmdof1 involves in the regulation of Zm401 gene. Plant Growth Regul 66:271–284

    Article  CAS  Google Scholar 

  • Chen MS, Pan BZ, Fu Q, Tao YB, Martínez-Herrera J, Niu L, Ni J, Dong Y, Zhao ML, Xu ZF (2017) Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci 7:1953

    Article  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92:4114–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai S, Zhang Z, Chen S, Beachy RN (2004) RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease. Proc Natl Acad Sci U S A 101:687–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS (2020) Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 40:750–776

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171–180

    Article  CAS  PubMed  Google Scholar 

  • Gübitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  Google Scholar 

  • Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4:1435–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Jiao Z, Niu MX, Yu X, Huang M, Liu C, Wang HL, Zhou Y, Mao W, Wang X, Yin W, Xia X (2021) Genome-wide comprehensive analysis of the GASA gene family in Populus. Int J Mol Sci 22:12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Su H, Cao H, Wei H, Fu X, Jiang X, Song Q, He X, Xu C, Luo K (2022) AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell 34:2688–2707

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang N, Sutliff TD, Litts JC, Rodriguez RL (1990) Classification and characterization of the rice alpha-amylase multigene family. Plant Mol Biol 14:655–668

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T (2021) What is going on with the hormonal control of flowering in plants? Plant J 105:431–445

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol 54:307–328

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in gerbera hybrida. Plant Cell 11:1093–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Gao J, Wang G, Wang S, Chen K, Pu W, Wang Y, Xia Q, Fan X (2022) Genome-wide identification and characterization of GASA Gene family in Nicotiana tabacum. Front Genet 12:768942

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J (2018) Petal senescence: a hormone view. J Exp Bot 69:719–732

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol 130:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, González-Reyes JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R (2013) FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant Cell Physiol 54:218–236

    Article  PubMed  Google Scholar 

  • Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7:1004–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  • Pak H, Guo Y, Chen M, Chen K, Li Y, Hua S, Shamsi I, Meng H, Shi C, Jiang L (2009) The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta 231:79–91

    Article  CAS  PubMed  Google Scholar 

  • Pan BZ, Chen MS, Ni J, Xu ZF (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics 15:974

    Article  PubMed  PubMed Central  Google Scholar 

  • Pi X, Pan B, Xu Z (2013) Induction of bisexual flowers by gibberellins in monoecious biofuel plant Jatropha curcas (Euphorbiaceae). Plant Divers Resour 35:26–32

    CAS  Google Scholar 

  • Prior MJ, Selvanayagam J, Kim JG, Tomar M, Jonikas M, Mudgett MB, Smeekens S, Hanson J, Frommer WB (2021) Arabidopsis bZIP11 is a susceptibility factor during Pseudomonas syringae infection. Mol Plant Microbe Interact 34:439–447

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Kang SG, Hah C, Jang JC (2016) Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Sci 246:1–10

    Article  CAS  PubMed  Google Scholar 

  • Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoe-cious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:13951398

    Google Scholar 

  • Rogers JC, Rogers SW (1992) Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4:1443–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinovich L, Weiss D (2010) The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J 64:1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot specific, GA3- and ABA-regulated gene from tomato. Plant J 2:153–159

    CAS  PubMed  Google Scholar 

  • Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Sah NK, Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 9:315–324

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498–510

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wong DCJ, Wang Y, Xu G, Ren C, Liu Y, Kuang Y, Fan P, Li S, Xin H, Liang Z (2021) GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiol 186:1660–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Huang J, Yang Y, Yao YA (2016) Transcriptome analysis of flower sex differentiation in Jatropha curcas L. using RNA sequencing. PLoS One 11:e0145613

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu G, Huang J, Lei SK, Sun XG, Li X (2019) Comparative gene expression profile analysis of ovules provides insights into Jatropha curcas L. ovule development. Sci Rep 9:15973

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu CJ, Zhao ML, Chen MS, Xu ZF (2020) Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 gene in the woody perennial Jatropha curcas alters flower and fruit development. Int J Mol Sci 21:8923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadeta KA, Hanemian M, Smit P, Hiemstra JA, Pereira A, Marco Y, Thomma BP (2011) The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance. Mol Plant Microbe Interact 24:1582–1591

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJ, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhang W, Zhang Y, Zhang X, Lang D, Zhang X (2019) The roles of methyl jasmonate to stress in plants. Funct Plant Biol 46:197–212

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Zhang D (2015) Roles of jasmonate signaling in plant inflorescence and flower development. Curr Opin Plant Biol 27:44–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Wang XJ (2008) Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Sci Bull 53:3839–3846

    CAS  Google Scholar 

  • Zhang S, Wang X (2017) One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant Signal Behav 12:e1226453

    Article  PubMed  Google Scholar 

  • Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69:745–759

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, Zhu M, Wang G, Sun X, Liao Z, Tang K (2015) A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8:163–175

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X (2015) Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol 169:2288–2303

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No, 31760198).

Funding

This study was funded by the National Natural Science Foundation of China (grant No, 31760198).

Author information

Authors and Affiliations

Authors

Contributions

GX: designed and managed this study; SL, LZ, and YC: performed the experiments; LZ and YC: analyzed the data; SL and GX: wrote the manuscript; all authors read and approved the manuscript.

Corresponding author

Correspondence to Gang Xu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Jinghua Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Zhao, L., Chen, Y. et al. Identification and promoter analysis of a GA-stimulated transcript 1 gene from Jatropha curcas. Plant Cell Rep 42, 1333–1344 (2023). https://doi.org/10.1007/s00299-023-03034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03034-5

Keywords

Navigation