Skip to main content
Log in

The SMC5/6 complex subunit MMS21 regulates stem cell proliferation in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice.

Abstract

The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that all relevant data supporting the findings of this study are available within the article and its supplementary material. Raw data that supports the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167

    Article  CAS  PubMed  Google Scholar 

  • Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5-6 complex, Is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine R, Vierstra R (2018) SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol 45:143–154

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Botchan MR (2013) The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5:a012807

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. nature 357, 128–134.The first article describing the ORC. Nature 357:128–134

    Article  CAS  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • Díaz M, Pečinková P, Nowicka A, Baroux C, Sakamoto T, Gandha PY, Jeřábková H, Matsunaga S, Grossniklaus U, Pecinka A (2019) The SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development. Plant Cell 31:1579–1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan X, Yang Y, Chen Y-H, Arenz J, Rangi GK, Zhao X, Ye H (2009) Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6. J Biol Chem 284:8507–8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta A, Stephen P (1997) Initiation of DNA replication in Eukaryotic cells. Annual Rev Cell Develop Biol. 13(1):293

    Article  CAS  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2017) Small organ SIZE 1 and small organ SIZE 2/DWARF and low-tillering form a complex to integrate auxin and brassinosteroid signaling in rice. Molecular Plant. 10(4):590

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Yang S, Zhang S, Ming L, Lai J, Qi Y, Shi S, Wang J, Wang Y, Qi X (2009) The Arabidopsis SUMO E3 ligase AtMMS21 a homologue of NSE2/MMS21, regulates cell proliferation in the root. The Plant J 60(4):666–678

    Article  CAS  PubMed  Google Scholar 

  • Hudson JJ, Bednarova K, Kozakova L, Liao C, Guerineau M, Colnaghi R, Vidot S, Marek J, Bathula SR, Lehmann AR (2011) Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS ONE 6:e17270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hülskamp, S. (2002) Ectopic B-Type Cyclin Expression Induces Mitotic Cycles in Endoreduplicating Arabidopsis Trichomes. Current Biology.

  • Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21:2284–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppsson K, Kanno T, Shirahige K, Sjögren C (2014) The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15:601–614

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Xie Y, Du J, Yang C, Lai J (2021) A SUMO ligase OsMMS21 regulates rice development and auxin response. J Plant Physiol 263:153447

    Article  CAS  PubMed  Google Scholar 

  • Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, Pruitt SC (2015) Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res 25:558–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Han D, Yang C (2018) AtMMS21: connecting DNA repair and root development. Trends Plant Sci 23:89–91

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Shi S, Zhang S, Xu P, Lai J, Liu Y, Yuan D, Wang Y, Du J, Yang C (2014) SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biology 14(1):153–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, Xue Y, Ren J (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lai J, Yu M, Wang F, Zhang J, Jiang J, Hu H, Wu Q, Lu G, Xu P, Yang C (2016) The arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell 28:2225–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malorano, Domenico, Moreau and Jacques (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature

  • Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller, H., Helin K., (2000) The E2F transcription factors: key regulators of cell proliferation. Biochimica ET Biophysica Acta, 1470.

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404:625–628

    Article  CAS  PubMed  Google Scholar 

  • Pebernard S, Wohlschlegel J, McDonald WH, Yates JR III, Boddy MN (2006) The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol Cell Biol 26:1617–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccoli GD, Torres-Rosell J, Aragón L (2009) The unnamed complex: what do we know about Smc5-Smc6? Chromosome Res 17:251–263

    Article  PubMed  Google Scholar 

  • Potts PR, Yu H (2005) Human MMS21/NSE2 Is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong C, Liu Y, Chang Z, Liu Z, Ding Y, Ding C (2022) Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development especially in control of tillering. J Exp Botany 72(11):3552

    Article  Google Scholar 

  • Shengchun, Zhang, Yanli, Qi, Chengwei and Yang (2010) Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development. Plant Signaling and Behavior

  • Tsakraklides V, Bell SP (2010) Dynamics of pre-replicative complex assembly. J Biol Chem 285:9437–9443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu T, Takihara Y, Ishimaru N, Pagano M, Takata T, Kudo Y (2013) Aurora-A controls pre-replicative complex assembly and DNA replication by stabilizing geminin in mitosis. Nat Commun 4:1–11

    Article  Google Scholar 

  • Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17:399–412

    Article  CAS  PubMed  Google Scholar 

  • Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D (2018) DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 37:e98306

    Article  PubMed  PubMed Central  Google Scholar 

  • Vélez-Cruz R, Manickavinayaham S, Biswas AK, Clary RW, Premkumar T, Cole F, Johnson DG (2016) RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 30:2500

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I (2009) The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21:2688–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitbread DL (1995) Cell cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA replication in budding yeast. Proc Natl Acad Sci 92:2514–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitbread LA, Dalton S (1995) Cdc54 belongs to the Cdc46/Mcm3 family of proteins which are essential for initiation of eukaryotic DNA replication. Gene 155:113–117

    Article  CAS  Google Scholar 

  • Xaver M, Huang L, Chen D, Klein F (2013) Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLoS Genet 9:e1004067

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Yuan D, Liu M, Li C, Liu Y, Zhang S, Yao N, Yang C (2013) AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant Physiol 161:1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K (2017) Abnormal Inflorescence meristem1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell 29:560–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Gibson S, Tye BK (1991) Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev 5:944

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Wang W, Marqués J, Mohan R, Saleh A, Durrant WE, Song J, Dong X (2013) Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol Cell 52:602–610

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Li C, Zhao L, Gao S, Lu J, Zhao M, Chen C, Liu X, Luo M, Cui Y, Yang C, Wu K (2015) The Arabidopsis SWI2/SNF2 CHROMATIN remodeling ATPase BRAHMA targets directly to pins and is required for root stem cell niche maintenance. Plant Cell 27:1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Lai J, Xu P, Zhang S, Zhang J, Li C, Wang Y, Du J, Liu Y, Yang C (2014) AtMMS21 regulates DNA damage response and homologous recombination repair in Arabidopsis. DNA Repair 21:140–147

    Article  CAS  PubMed  Google Scholar 

  • Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H, Novakova M, Jurcisinova L, Alt A, Oliver AW, Lehmann AR (2016) Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res 44:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lai J, Wang F, Yang S, He Z, Jiang J, Li Q, Wu Q, Liu Y, Yu M, Du J, Xie Q, Wu K, Yang C (2017) A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development. Plant Physiol 173:1574–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102:4777–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Pro. Jiankang Zhu and Pro. Caixia Gao for offering the CRISPR/Cas9 gene-editing vector. We also appreciate the Biogle and Biorun Geneme Editing Center for producing transgenic rice.

Funding

This study was supported by the National Natural Science Foundation of China (31971842).

Author information

Authors and Affiliations

Authors

Contributions

CD and YD designed the research. QX, YS, MM, and CD performed the experiments. QX and CD analyzed the data and prepared the paper.

Corresponding author

Correspondence to Chengqiang Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Accession numbers

Gene information in this article can be found in Rice Annotation Project database, miRbase data libraries and the Arabidopsis Information Resource are under the corresponding accession numbers: OsActin (Os03g0718100), OsMMS21(Os05g0563500), OsSMC5 (Os05g0596600), OsSMC6 (Os09g0121050), cycb2-1 (Os04g0563700), OsERF3 (Os01g0797600), OsPIN9 (Os01g0802700), OsMADS25 (Os04g0304400), SMOS1 (Os05g0389000), AIM1 (Os02g0274100).

Additional information

Communicated by Wei Ma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xun, Q., Song, Y., Mei, M. et al. The SMC5/6 complex subunit MMS21 regulates stem cell proliferation in rice. Plant Cell Rep 42, 1279–1290 (2023). https://doi.org/10.1007/s00299-023-03030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03030-9

Keywords

Navigation