Skip to main content
Log in

Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Cytoplasm-localized RING ubiquitin E3 ligase AtCHYR2 involved in plant glucose responses during germination and post-germinative growth.

Abstract

CHY ZINC FINGER AND RING PROTEIN (CHYR) containing both a CHY zinc finger and a C3H2C3-type RING domain plays important roles in plant drought tolerance and the abscisic acid (ABA) response; however, their functions in sugar signaling pathways are less studied. Here, we report a glucose (Glc) response gene AtCHYR2, a homolog of RZFP34/CHYR1, which is induced by various abiotic stresses, ABA, and sugar treatments. In vitro, we demonstrated that AtCHYR2 is a cytoplasm-localized RING ubiquitin E3 ligase. Overexpression of AtCHYR2 led to hypersensitivity to Glc and enhanced Glc-mediated inhibition of cotyledon greening and post-germinative growth. Contrastingly, AtCHYR2 loss-of-function plants were insensitive to Glc-regulated seed germination and primary root growth, suggesting that AtCHYR2 is a positively regulator of the plant glucose response. Additionally, physiological analyses showed that overexpression AtCHYR2 increased stomata aperture and photosynthesis under normal condition, and promoted accumulation of endogenous soluble sugar and starch in response to high Glc. Genome-wide RNA sequencing analysis showed that AtCHYR2 affects a major proportion of Glc-responsive genes. Particularly, sugar marker gene expression analysis suggested that AtCHYR2 enhances the Glc response via a signaling pathway dependent on glucose metabolism. Taken together, our findings show that a novel RING ubiquitin E3 ligase, AtCHYR2, plays an important role in glucose responses in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The RNA sequencing data for this research have been deposited in the NCBI Sequence Read Archive under accession code PRJNA912374.

References

  • Al-Saharin R, Hellmann H, Mooney S (2022) Plant E3 ligases and their role in abiotic stress response. Cells 11:890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama S, Terada S, Sanagi M, Hasegawa Y, Lu Y, Morita Y, Chiba Y, Sato T, Yamaguchi J (2017) Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis. Biochem Biophys Res Commun 491:33–39

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Broeckx T, Hulsmans S, Rolland F (2016) The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J Exp Bot 67:6215–6252

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Huang J, Tang P, Li Y, Hu Z, Cui B, Xie X, Chen Q, Tian J, Gu H, Yue C, Zhang J, Zhang Y, Chen G (2022) SlCHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Sci Hortic 296:110900

    Article  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Zhang B, Qin F (2015) Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell 27:3228–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan S, Yao Z, Hou D, Wu Z, Zhu WG, Wu M (2007) Phosphorylation of Pirh2 by calmodulin-dependent kinase II impairs its ability to ubiquitinate p53. EMBO J 26:3062–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008) D-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh M, Laxmi A (2015) Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiol 168:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Wang HL, Li HG, Su Y, Li S, Yang Y, Feng CH, Yin W, Xia X (2018) PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in populus. Plant Biotechnol J 16:1514–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489

    Article  CAS  PubMed  Google Scholar 

  • Hsu KH, Liu CC, Wu SJ, Kuo YY, Lu CA, Wu CR, Lian PJ, Hong CY, Ke YT, Huang JH, Yeh CH (2014) Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol 86:125–137

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li CY, Pattison DL, Gray WM, Park S, Gibson SI (2010) SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol 152:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia B, Wang Y, Zhang D, Li W, Cui H, Jin J, Cai X, Shen Y, Wu S, Guo Y, Sun M, Sun X (2021) Genome-wide identification, characterization and expression analysis of Soybean CHYR gene family. Int J Mol Sci 22:12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo H, Lim CW, Lee SC (2019) A pepper RING-type E3 ligase, CaASRF1, plays a positive role in drought tolerance via modulation of CaAIBZ1 stability. Plant J 98:5–18

    Article  CAS  PubMed  Google Scholar 

  • Jossier M, Bouly J, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328

    Article  CAS  PubMed  Google Scholar 

  • Karve A, Xia X, Moore BD (2012) Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses. Plant Physiol 158:1965–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley DR (2018) E3 ubiquitin ligases: key regulators of hormone signaling in plants. Mol Cell Proteomics 17:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Liu KH, Sheen J (2021) Dynamic nutrient signaling networks in plants. Annu Rev Cell Dev Biol 37:341–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu B, Lou S, Bi H, Tang H, Tong S, Song Y, Chen N, Zhang H, Jiang Y, Liu J (2021) CHYR1 ubiquitinates the phosphorylated WRKY70 for degradation to balance immunity in Arabidopsis thaliana. New Phytol 230:1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang W, Zhao X, Kang G, Li N, Xu H (2022) Genome-wide analysis and functional characterization of CHYR gene family associated with abiotic stress tolerance in bread wheat (Triticum aestivum L.). BMC Plant Biol. https://doi.org/10.1186/s12870-022-03589-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Aoyama S, Fukao Y, Chiba Y, Sato T, Yamaguchi J (2019) Involvement of the membrane-localized ubiquitin ligase ATL8 in sugar starvation response in Arabidopsis. Plant Biotechnol (tokyo) 36:107–112

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Paparelli E, Parlanti S, Gonzali S, Novi G, Mariotti L, Ceccarelli N, van Dongen JT, Kolling K, Zeeman SC, Perata P (2013) Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis. Plant Cell 25:3760–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis Book 6:e0117

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G (2019) TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the “yin-yang” model? Plant Sci 288:110220

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Hadingham SA, Li Y, Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434

    Article  CAS  PubMed  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  CAS  PubMed  Google Scholar 

  • Sami F, Siddiqui H, Hayat S (2019) Interaction of glucose and phytohormone signaling in plants. Plant Physiol Biochem 135:119–126

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-Induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Liu Q, Wu J, Ding J (2012) ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize. Gene 495:146–153

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Zhang B, Zhang Y, Chen X, Xiong H, Matsui T, Tian X (2017) High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci 7:1960

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu Q, Liu Z, Yang H, Wang J, Li X, Yang Y (2016) Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. J Integr Plant Biol 58:67–80

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Wu Y, Xie Q (2016) Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant 9:21–33

    Article  CAS  PubMed  Google Scholar 

  • Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT (2014) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ 37:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Xu P, Yu Y, Xiong Y (2020) Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. Proc Natl Acad Sci U S A 117:32223–32225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95:10294–10299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Liu Y, Ye N, Liu R, Zhang J (2011) Involvement of the abscisic acid catabolic gene CYP707A2 in the glucose-induced delay in seed germination and post-germination growth of Arabidopsis. Physiol Plant 143:375–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Bin Zhang of Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS) for detection of in vitro self-ubiquitination assay.

Funding

This work was supported by the National Natural Science Foundation (31701062, 31701439 and 31771801), the Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education (KFT202012), the open funds of the State Key Laboratory of Plant Physiology and Biochemistry (SKLPPBKF2112), and the Plan in Scientific and Technological Innovation Team of Outstanding Young (T201704).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.Y., H.W., F.Q., and S.D.; investigation, S.Y., H.L. and S.D.; data curation, Y.H., X.Z., Y.C., H. D., and S.D.; writing—original draft preparation, S.D.; writing—review and editing, H.W., F.Q., and S.D.; funding acquisition, H.W. and S.D. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hongwei Wang, Feng Qin or Shuangcheng Ding.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Not applicable.

Additional information

Communicated by Rachel Wells.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, H., Huang, Y. et al. Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana. Plant Cell Rep 42, 989–1002 (2023). https://doi.org/10.1007/s00299-023-03008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03008-7

Keywords

Navigation