Skip to main content
Log in

The AP2/ERF transcription factor SlERF.J2 functions in hypocotyl elongation and plant height in tomato

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato.

Abstract

Light and phytohormones can synergistically regulate photomorphogenesis-related hypocotyl elongation and plant height in tomato. AP2/ERF family genes have been extensively demonstrated to play a role in light signaling and various hormones. In this study, we identified a novel AP2/ERF family gene in tomato, SlERF.J2. Overexpression of SlERF.J2 inhibits hypocotyl elongation and plant height. However, the plant height in the slerf.j2ko knockout mutant was not significantly changed compared with the WT. we found that hypocotyl cell elongation and plant height were regulated by a network involving light, auxin and gibberellin signaling, which is mediated by regulatory relationship between SlERF.J2 and IAA23. SlERF.J2 protein could bind to IAA23 promoter and inhibit its expression. In addition, light–dark alternation can activate the transcription of SlERF.J2 and promote the function of SlERF.J2 in photomorphogenesis. Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and within its supplementary materials published online.

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol 53(4):659–672

    Article  CAS  PubMed  Google Scholar 

  • Bai MY, Fan M, Oh E, Wang ZY (2012) A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24(12):4917–4929

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol 53(9):1583–1595

    Article  CAS  PubMed  Google Scholar 

  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:5833

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  CAS  PubMed  Google Scholar 

  • Catala C, Rose JK, York WS, Albersheim P, Darvill AG, Bennett AB (2001) Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol 127(3):1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M (2009) Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot 60(4):1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY (2016) Information integration and communication in plant growth regulation. Cell 164(6):1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451(7177):480–484

    Article  PubMed  Google Scholar 

  • de Wit M, Galvao VC, Fankhauser C (2016) Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol 67:513–537

    Article  PubMed  Google Scholar 

  • Deng W, Yang Y, Ren Z, Audran-Delalande C, Mila I, Wang X, Song H, Hu Y, Bouzayen M, Li Z (2012) The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytol 194(2):379–390

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Chen Y, Liu Z, Liu Z, Shu P, Wang R, Hao Y, Su D, Pirrello J, Liu Y, Li Z, Grierson D, Giovannoni JJ, Bouzayen M, Liu M (2022) SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. Plant Cell 34(4):1250–1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365-373

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Yan Y, Jiang B, Shi Y, Jia Y, Cheng J, Shi Y, Kang J, Li H, Zhang D, Qi L, Han R, Zhang S, Zhou Y, Wang X, Terzaghi W, Gu H, Kang D, Yang S, Li J (2020) The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J 39(13):e103630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. Bmc Plant Biol 8:1–12

    Article  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451(7177):475–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marin-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tome DF, Coego A, Beynon J, Alabadi D, Bachmair A, Leon J, Gray JE, Theodoulou FL, Holdsworth MJ (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 53(3):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Mao M, Deng Y, Sun L, Chen R, Cao P, Lai J, Zhang Y, Wang C, Li C, Li Y, Bai Q, Tan T, Yang J, Wang S (2022) Multi-omics analysis reveals that SlERF.D6 synergistically regulates SGAs and fruit development. Front Plant Sci 13:860577

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118(3):773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irfan M, Kumar P, Kumar V, Datta A (2022) Fruit ripening specific expression of beta-D-N-acetylhexosaminidase (beta-Hex) gene in tomato is transcriptionally regulated by ethylene response factor SlERF.E4. Plant Sci 323:111380

    Article  CAS  PubMed  Google Scholar 

  • Job N, Datta S (2021) PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. New Phytol 230(1):190–204

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13(5):571–577

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Li QF, He JX (2016) BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant 9(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–649

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Guo X, Chen G, Zhu Z, Yin W, Hu Z (2016) Silencing SlGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato. Plant Physiol Biochem 109:491–501

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Chen Y, Chen Y, Shin JH, Mila I, Audran C, Zouine M, Pirrello J, Bouzayen M (2018) The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. New Phytol 219(2):631–640

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53(2):312–323

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Munne-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456(7221):459–463

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18):4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405(6785):462–466

    Article  CAS  PubMed  Google Scholar 

  • Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70(4):585–598

    Article  CAS  PubMed  Google Scholar 

  • Saladie M, Rose JK, Cosgrove DJ, Catala C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47(2):282–295

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Olszewski NE (1998) Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription. Plant Mol Biol 38(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Shi QM, Yang X, Song L, Xue HW (2011) Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol Plant 4(6):1092–1104

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456(7221):520–523

    Article  CAS  PubMed  Google Scholar 

  • Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci USA 106(18):7654–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Bassa C, Audran C, Mila I, Cheniclet C, Chevalier C, Bouzayen M, Roustan JP, Chervin C (2014) The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion. Plant Cell Physiol 55(11):1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154(2):567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16(2):379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voegele A, Linkies A, Muller K, Leubner-Metzger G (2011) Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp Bot 62(14):5131–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Article  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67:539–574

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Hu Z, Zhu Z, Dong T, Zhao Z, Cui B, Chen G (2014) Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Sci Rep 4:4367

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci 10:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu N, Chu Y, Chen H, Li X, Wu Q, Jin L, Wang G, Huang J (2018) Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet 14(10):e1007662

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Kang J, Xie Q, Gong J, Shen H, Chen Y, Chen G, Hu Z (2020) The basic helix-loop-helix transcription factor bHLH95 affects fruit ripening and multiple metabolisms in tomato. J Exp Bot 71(20):6311–6327

    Article  CAS  PubMed  Google Scholar 

  • Zhao MJ, Yin LJ, Liu Y, Ma J, Zheng JC, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ (2019) The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. Bmc Plant Biol 19(1):506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Liang H, Chen G, Li F, Wang Y, Liao C, Hu Z (2019) The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Plant Cell Rep 38(9):1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H, Audran C, Roustan JP, Bouzayen M (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE 9(1):e84203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31872121), and the Natural Science Foundation of Chongqing of China (csts2019jcyj-msxmX0094), and the Innovation project of people returned from studying abroad of Chongqing (cx2019158).

Author information

Authors and Affiliations

Authors

Contributions

ZH and QX designed and managed the research work and improved the manuscript. YC, HY designed the experiments and analyzed the data. YC, BT, FL, GC performed the experiments. YC wrote the manuscript.

Corresponding authors

Correspondence to Guoping Chen or Zongli Hu.

Ethics declarations

Conflict of interest

All authors have read and approved this version of the article, and due care has been taken to ensure the integrity of this work. All the authors have declared no conflict of interest.

Additional information

Communicated by Sukhpreet Sandhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, H., Tang, B. et al. The AP2/ERF transcription factor SlERF.J2 functions in hypocotyl elongation and plant height in tomato. Plant Cell Rep 42, 371–383 (2023). https://doi.org/10.1007/s00299-022-02963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02963-x

Keywords

Navigation