Skip to main content
Log in

ZEITLUPE enhances expression of PIF4 and YUC8 in the upper aerial parts of Arabidopsis seedlings to positively regulate hypocotyl elongation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Microarray and genetic analyses reveal that ZTL induces the expression of genes related to auxin synthesis, thereby promoting hypocotyl elongation.

Abstract

ZTL is a blue-light receptor that possesses a light–oxygen–voltage-sensing (LOV) domain, an F-box motif, and a kelch repeat domain. ZTL promotes hypocotyl elongation under high temperature (28 °C) in Arabidopsis thaliana; however, the mechanism of this regulation is unknown. Here, we divided seedlings into hypocotyls and upper aerial parts, and performed microarray analyses. In hypocotyl, 1062 genes were down-regulated in ztl mutants (ztl-3 and ztl-105) compared with wild type; some of these genes encoded enzymes involved in cell wall modification, consistent with reduced hypocotyl elongation. In upper aerial parts, 1038 genes were down-regulated in the ztl mutants compared with wild type; these included genes involved in auxin synthesis and auxin response. Furthermore, the expression of the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) gene, which encodes a transcription factor known to positively regulate YUCCA genes (YUCs), was also decreased in the ztl mutants. Genetic analysis revealed that overexpression of PIF4 and YUC8 could restore the suppressed hypocotyl length in the ztl mutants. Our results suggest that ZTL induces expression of YUC8 via PIF4 in upper aerial parts and promotes hypocotyl elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams J, Kelso R, Cooley L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boron AK, Vissenberg K (2014) The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep 33:697–706

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 25:413–427

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cowling RJ, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 50:1351–1357

    Article  CAS  Google Scholar 

  • Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Francoz E, Ranocha P, Burlat V, Dunand C (2015) Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci 20:515–524

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara S, Wang L, Han L, Suh SS, Salomé PA, McClung CR, Somers DE (2008) Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 283:23073–23083

    Article  CAS  PubMed  Google Scholar 

  • Furuya M (1993) Phytochromes: their molecular species, gene families, and functions. Annu Rev Plant Physiol Plant Mol Biol 44:617–645

    Article  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H (2012) Rational design of an auxin antagonist of the SCF (TIR1) auxin receptor complex. ACS Chem Biol 7:590–598

    Article  CAS  PubMed  Google Scholar 

  • He Z, Zhao X, Kong F, Zuo Z, Liu X (2016) TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis. J Exp Bot 67:775–785

    Article  CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Hentrich M, Böttcher C, Düchting P (2013a) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentrich M, Sánchez-Parra B, Pérez Alonso MM (2013b) YUCCA8 and YUCCA9 overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Sign Behav 8:e26363

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–490

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. EMBO J 83:8447–8451

    CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  CAS  PubMed  Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LA, Peeters AJ, Pierik R (2010) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA 107:22740–22744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevei E, Gyula P, Hall A, Kozma-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol 140:933–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schäfer E, Quail PH (2007) The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19:2516–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyosue T, Wada M (2000) LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J 23:807–815

    Article  CAS  PubMed  Google Scholar 

  • Kohnen MV, Schmid-Siegert E, Trevisan M (2016) Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28:2889–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  CAS  PubMed  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell Suppl 14:207–225

    Article  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    Article  PubMed  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Takase T, Kiyosue T (2015) ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana. Plant Sign Behav 10:e998540

    Article  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndamukong I, Chetram A, Saleh A, Avramova Z (2009) Wall-modifying genes regulated by the Arabidopsis homolog of trithorax, ATX1: repression of the XTH33 gene as a test case. Plant J 58:541–553

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–340

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Onai K, Ishiura M (2005) RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem 240:193–200

    Article  Google Scholar 

  • Okamoto K, Ishiura M, Torii T, Aoki S (2007) A compact multi-channel apparatus for automated real-time monitoring of bioluminescence. J Biochem Biophys Methods 70:535–538

    Article  CAS  PubMed  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LA (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis. Plant Physiol 149:1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J (2014) Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol 165:1285–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    Article  CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Bastow RM, Solomon KS, Dowson-Day MJ, Elumalai RP, Millar AJ (2000) Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol 122:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh A, Takase T, Kitaki H, Kiyosue T (2015a) Gene expression profile of Arabidopsis plants that overexpress ZEITLUPE/LOV KELCH PROTEIN1: up-regulation of auxin-inducible genes in hypocotyls. Plant Biotechnol 32:257–261

    Article  CAS  Google Scholar 

  • Saitoh A, Takase T, Kitaki H, Miyazaki Y, Kiyosue T (2015b) Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls. Plant Sign Behav 10:e1071752

    Article  Google Scholar 

  • Sato A, Yamamoto KT (2008) Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133:397–405

    Article  CAS  PubMed  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67:608–621

    Article  CAS  PubMed  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto KT, Watahiki MK, Matsuzaki J, Satoh S, Shimizu H (2017) Space-time analysis of gravitropism in etiolated Arabidopsis hypocotyls using bioluminescence imaging of the IAA19 promoter fusion with a destabilized luciferase reporter. J Plant Res 130:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhara M, Mitsui S, Hirano TR, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. J Exp Bot 55:2015–2027

    Article  CAS  PubMed  Google Scholar 

  • Zoltowski BD, Imaizumi T (2014) Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes 35:213–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yunde Zhao (Section of Cell and Developmental Biology, University of California, San Diego, California, USA) for kindly providing pYUC8:GUS seeds; Dr. Oono Yutaka (Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma, Japan) for kindly providing pDR5:GUS seeds; Dr. Julin N. Maloof (Department of Plant Biology, University of California Davis, Davis, California, USA) for kindly providing PIF4 ox seeds; and Dr. Stephan Pollmann (Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Madrid, Spain) for kindly providing YUC8 ox seeds.

Author information

Authors and Affiliations

Authors

Contributions

AS, TT, HA, MW and TK conceived and designed the experiments. AS and HA performed the experiments. AS and TT analyzed the data. AS, YH and TK wrote the paper.

Corresponding author

Correspondence to Aya Saitoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Prakash P. Kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 429 KB)

Supplementary file2 (DOCX 1223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, A., Takase, T., Abe, H. et al. ZEITLUPE enhances expression of PIF4 and YUC8 in the upper aerial parts of Arabidopsis seedlings to positively regulate hypocotyl elongation. Plant Cell Rep 40, 479–489 (2021). https://doi.org/10.1007/s00299-020-02643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02643-8

Keywords

Navigation