Skip to main content
Log in

Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges.

Abstract

Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in ‘Hamlin’ sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The raw data are available under accession number PRJNA755699 in the National Center for Biotechnology Information (NCBI) database.

References

  • Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Baldwin E, Plotto A, Bai J, Manthey J, Zhao W, Raithore S, Irey M (2018) Effect of abscission zone formation on orange (Citrus sinensis) fruit/juice quality for trees affected by Huanglongbing (HLB). J Agric Food Chem 66:2877–2890

    Article  CAS  PubMed  Google Scholar 

  • Boina DR, Bloomquist JR (2015) Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Manag Sci 71:808–823

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37

    Google Scholar 

  • Burow MD, Chlan CA, Sen P, Lisca A, Murai N (1990) High-frequency generation of transgenic tobacco plants after modified leaf disk cocultivation with Agrobacterium tumefaciens. Plant Mol Biol Rep 8:124–139

    Article  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2003) The SABATH family of MTs in Arabidopsis thaliana and other plant species. Recent Adv Phytochem 37:253–284

    Article  Google Scholar 

  • Dala-Paula BM, Plotto A, Bai J, Manthey JA, Baldwin EA, Ferrarezi RS, Gloria MBA (2019) Effect of huanglongbing or greening disease on orange juice quality, a review. Front Plant Sci 9:1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutt M, Grosser JW (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tissue Organ Cult 98:331–340

    Article  CAS  Google Scholar 

  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Lee DH, Grosser JW (2010) Bifunctional selection–reporter systems for genetic transformation of citrus: mannose-and kanamycin-based systems. In Vitro Cell Dev Biol Plant 46:467–476

    Article  CAS  Google Scholar 

  • Dutt M, Vasconcellos M and Grosser JW (2011) Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell Tissue Organ Cult 107:79–89

    Article  CAS  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser JW (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus Greening). PLoS ONE 10:e0137134

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutt M, Mahmoud LM, Chamusco K, Stanton D, Chase CD, Nielsen E, Quirico M, Yu Q, Gmitter FG Jr, Grosser JW (2021) Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS ONE 16:e0255842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P (1998) Plant Defense Peptides. Peptide Sci 47:479–491

    Article  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grosser JW, Gmitter FG Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Front Plant Sci 7:1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman MT, Doud MS, Williams L, Zhang M-Q, Ding F, Stover E, Hall D, Zhang S, Jones L, Gooch M (2013) Heat treatment eliminates ‘Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology 103:15–22

    Article  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hu J, Wang N (2016) Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carroll GC, Tudzynski P (eds) Plant relationships. The mycota, vol 5. Springer, Berlin

    Google Scholar 

  • Kuć J (1982) Induced immunity to plant disease. Bioscience 32:854–860

    Article  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YX, Zhang W, Dong HX, Liu ZY, Ma J, Zhang XY (2018) Salicylic acid in Populus tomentosa is a remote signalling molecule induced by Botryosphaeria dothidea infection. Sci Rep 8:14059

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Lima Silva CC, Shimo HM, de Felício R, Mercaldi GF, Rocco SA, Benedetti CE (2019) Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Sci Rep 9:3901

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindgreen S (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Love M, Anders S, Huber W (2014) Differential analysis of count data–the DESeq2 package. Genome Biol 15(10):1186

    Google Scholar 

  • McClean R (1970) Greening or blotchy-mottle disease of citrus. Phytophylactica 2:177–194

    Google Scholar 

  • McCollum G, Hilf M, Irey M, Luo W, Gottwald T (2016) Susceptibility of sixteen citrus genotypes to ‘Candidatus Liberibacter asiaticus’. Plant Dis 100:1080–1086

    Article  PubMed  Google Scholar 

  • Metraux J, Burkhart W, Moyer M, Dincher S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86:896–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Métraux JP, Nawrath C, Genoud T (2002) Systemic acquired resistance. Euphytica 124:237–243

    Article  Google Scholar 

  • Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141:1666–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Soares J, Pang Z, Huang Y, Sun Z, Wang N, Grosser J, Dutt M (2020) Potential mechanisms of AtNPR1 mediated resistance against Huanglongbing (HLB) in citrus. Int J Mol Sci 21:2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat S, Ali S, Mittra B, Grover A (2017) Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnol Rep 13:72–79

    Article  Google Scholar 

  • Robertson CJ, Zhang X, Gowda S, Orbović V, Dawson WO, Mou Z (2018) Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing. J Citrus Pathol 5:1–8

    Article  Google Scholar 

  • Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor–like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slusarenko A, Meier BM, Croft K, Eiben H (1993) Lipoxygenase in plant disease. Mechanisms of plant defense responses. Springer, Berlin, pp 211–220

    Chapter  Google Scholar 

  • Stansly PA, Arevalo HA, Qureshi JA, Jones MM, Hendricks K, Roberts PD, Roka FM (2014) Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by huanglongbing. Pest Manag Sci 70:415–426

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Thodberg S, Jakobsen Neilson EH (2020) The “green” FMOs: diversity, functionality and application of plant flavoproteins. Catalysts 10:329

    Article  CAS  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi D, Jiang YL, Kumar D (2010) SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett 584:3458–3463

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Nagel A, Steinhauser D, Gibon Y, Bläsing OE, Redestig H, Sreenivasulu N, Krall L, Hannah MA, Poree F (2006) PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinform 7:535

    Article  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S (2021) Systemic propagation of immunity in plants. New Phytol 229:1234–1250

    Article  CAS  PubMed  Google Scholar 

  • Weinstein L, Porter C, Laurencot H (1962) Role of the shikimic acid pathway in the formation of tryptophan in higher plants: evidence for an alternative pathway in the bean. Nature 194:205–206

    Article  CAS  Google Scholar 

  • Welker S, Pierre M, Santiago JP, Dutt M, Vincent C, Levy A (2022) Phloem transport limitation in Huanglongbing-affected sweet orange is dependent on phloem-limited bacteria and callose. Tree Physiol 42:379–390

    Article  CAS  PubMed  Google Scholar 

  • Zane NR, Chen Y, Wang MZ, Thakker DR (2018) Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatr Res 83:527–535

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Mol Biol 93:341–353

    Article  CAS  PubMed  Google Scholar 

  • Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by funds received from the Citrus Research and Development Foundation, Inc. (CRDF) and the Florida State legislative funding for the UF/IFAS Citrus Initiative.

Author information

Authors and Affiliations

Authors

Contributions

JMS and KCW—gene expression analysis. KCW—transcriptome data analysis. WQ—calculation of qPCR validation. LMM—statistical analysis. JMS—confocal microscope and western blots. MD—developed the NtSABP2 construct, generated and screened the transgenic plants. JMS and MD—wrote the manuscript. MD and JWG—designed the study, obtained funding, and supervised the project. All authors read and approved the manuscript.

Corresponding author

Correspondence to Manjul Dutt.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Prakash P. Kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 187 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, J.M., Weber, K.C., Qiu, W. et al. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. Plant Cell Rep 41, 2305–2320 (2022). https://doi.org/10.1007/s00299-022-02922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02922-6

Keywords

Navigation