Skip to main content
Log in

Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses.

Abstract

Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acheampong AK, Shanks C, Cheng CY, Schaller GE, Dagdas Y, Kieber JJ (2020) EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc Natl Acad Sci USA 117:27034–27043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181:527–533

    Article  CAS  PubMed  Google Scholar 

  • Avin-Wittenberg T, Baluska F, Bozhkov PV, Elander PH, Fernie AR, Galili G, Hassan A, Hofius D, Isono E, Le Bars R, Masclaux-Daubresse C, Minina EA, Peled-Zehavi H, Coll NS, Sandalio LM, Satiat-Jeunemaitre B, Sirko A, Testillano PS, Batoko H (2018) Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. J Exp Bot 69:1335–1353

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Wang A (2017) The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol 91:e01478

    Article  CAS  PubMed  Google Scholar 

  • Chi W, Li J, He BY, Chai X, Xu XM, Sun XW, Jiang JJ, Feng PQ, Zuo JR, Lin RC, Rochaix JD, Zhang LX (2016) DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4. Proc Natl Acad Sci USA 113:E3568–E3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvrckova F, Zarsky V (2013) Old AIMs of the exocyst: evidence for an ancestral association of exocyst subunits with autophagy-associated Atg8 proteins. Plant Signal Behav 8:e27099

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P (2012) Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA 109:15942–15946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308

    Article  CAS  PubMed  Google Scholar 

  • Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre JC, Subramani S (2016) Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17:537–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field S, Conner WC, Roberts DM (2021) Arabidopsis CALMODULIN-LIKE 38 regulates hypoxia-induced autophagy of SUPPRESSOR OF GENE SILENCING 3 bodies. Front Plant Sci 12:722940

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674

    Article  PubMed  Google Scholar 

  • Gou W, Li X, Guo S, Liu Y, Li F, Xie Q (2019) Autophagy in plant: a new orchestrator in the regulation of the phytohormones homeostasis. Int J Mol Sci 20:2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle T (2007) Plant biology: sticking with auxin. Nature 446:621–622

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Hafren A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A 114:E2026–E2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafren A, Ustun S, Hochmuth A, Svenning S, Johansen T, Hofius D (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol 176:649–662

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Yin Y, Fei SZ (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S, Cheng J, Qi Y, Hong Y, Liu Y (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife 6:e23897

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  PubMed  Google Scholar 

  • Hickl D, Drews F, Girke C, Zimmer D, Muhlhaus T, Hauth J, Nordstrom K, Trentmann O, Neuhaus EH, Scheuring D, Fehlmann T, Keller A, Simon M, Mohlmann T (2021) Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. J Exp Bot 72:6867–6881

    Article  CAS  PubMed  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honig A, Avin-Wittenberg T, Ufaz S, Galili G (2012) A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 24:288–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167:1731–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, Xie LJ, Xiao S (2019) Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 15:407–422

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismayil A, Yang M, Liu Y (2020) Role of autophagy during plant-virus interactions. Semin Cell Dev Biol 101:36–40

    Article  CAS  PubMed  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi M, Ishida H, Nakamura S, Hidema J (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. Plant Cell 29:377–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Zhou J, Guo R, Lin Y, Kung CH, Hu S, Ng WY, Zhuang X, Jiang L (2020) AtNBR1 Is a selective autophagic receptor for AtExo70E2 in Arabidopsis. Plant Physiol 184:777–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia M, Liu X, Xue H, Wu Y, Shi L, Wang R, Chen Y, Xu N, Zhao J, Shao J, Qi Y, An L, Sheen J, Yu F (2019) Noncanonical ATG8-ABS3 interaction controls senescence in plants. Nat Plants 5:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Mizuno T (2002) His-to-Asp phosphorelay and cytokinin signaling: [II] characterization of type-A ARRs implicated in AHK4 (CRE1)-mediated cytokinin-signaling. Plant Cell Physiol 43:S107–S107

    Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis Book 12:e0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulich I, Pecenkova T, Sekeres J, Smetana O, Fendrych M, Foissner I, Hoftberger M, Zarsky V (2013) Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14:1155–1165

    CAS  PubMed  Google Scholar 

  • Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236:887–900

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li Z, He Y (2020) Roles of brassinosteroids in plant reproduction. Int J Mol Sci 21:872

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, Zipfel C, Jones JD (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A 106:15973–15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, Liu SS, Wang A, Zhou X (2017) A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog 13:e1006213

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang C, Li Y, Wu G, Hou X, Zhou X, Wang A (2018) Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat Commun 9:1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang M, Zhang C, Zhou X (2020) Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytol 225:1746–1761

    Article  CAS  PubMed  Google Scholar 

  • Lin MY, Chai KH, Ko SS, Kuang LY, Lur HS, Charng YY (2014) A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol 164:2045–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Bassham DC (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE 5:e11883

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Guo W (2012) The exocyst complex in exocytosis and cell migration. Protoplasma 249:587–597

    Article  PubMed  Google Scholar 

  • Lokdarshi A, Conner WC, McClintock C, Li T, Roberts DM (2016) Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiol 170:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137:681–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR (2022) Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. Plant Physiol 188:2073

    Article  CAS  PubMed  Google Scholar 

  • Marshall RS, Vierstra RD (2018) Autophagy: the master of bulk and selective recycling. Annu Rev Plant Biol 69:173–208

    Article  CAS  PubMed  Google Scholar 

  • Meiri D, Breiman A (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 59:387–399

    Article  CAS  PubMed  Google Scholar 

  • Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G (2014) Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 26:4084–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, Dubois M, Hacquard T, Derrien B, Izquierdo E, Lecorbeiller M, Bouteiller N, De Cilia J, Ziegler-Graff V, Vaucheret H, Galili G, Genschik P (2019) The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc Natl Acad Sci U S A 116:22872–22883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew RW, Uyeda I (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA 109:10113–10118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y (2017) Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41(33–46):e37

    Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  CAS  PubMed  Google Scholar 

  • Paez Valencia J, Goodman K, Otegui MS (2016) Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol 67:309–335

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Papsdorf K, Richter K (2014) Protein folding, misfolding and quality control: the role of molecular chaperones. Essays Biochem 56:53–68

    Article  PubMed  Google Scholar 

  • Pecenkova T, Markovic V, Sabol P, Kulich I, Zarsky V (2017) Exocyst and autophagy-related membrane trafficking in plants. J Exp Bot 69:47–57

    Article  CAS  PubMed  Google Scholar 

  • Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:818–822

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Luo X, Bassham DC (2017) TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. Front Plant Sci 8:1204

    Article  PubMed  PubMed Central  Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2009) RNAi suppression of RPN12a decreases the expression of type-A ARRs, negative regulators of cytokinin signaling pathway, in Arabidopsis. Mol Cells 28:375–382

    Article  CAS  PubMed  Google Scholar 

  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196:13–28

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Samuel MA (2015) A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis. Plant Signal Behav 10:e989749

    Article  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    Article  CAS  PubMed  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 7:12439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S (2019) A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 42:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Sorenson R, Bailey-Serres J (2014) Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 111:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Burgos J, Bassham DC (2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS ONE 12:e0182591

    Article  PubMed  PubMed Central  Google Scholar 

  • Su W, Bao Y, Yu X, Xia X, Liu C, Yin W (2020) Autophagy and Its Regulators in Response to Stress in Plants. Int J Mol Sci 21:8889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23:3761–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TakatoshiaAo K, Yamada H, Kato T, Sato S, Tabata S, Mizuno T (2003) Characterization of type-A ARRs implicated in phosphorelay signal transduction in A-thaliana. Plant Cell Physiol 44:S125–S125

    Google Scholar 

  • Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, Skirycz A, Vierstra RD, Balazadeh S (2021) Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. Autophagy 17:2184–2199

    Article  CAS  PubMed  Google Scholar 

  • To JPC, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Liu SY, Zou JZ, Zhao JJ, Zhu FF, Chai LX, Wang Y, Han C, Wang XB (2021) A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies. EMBO J 40:e108050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker L, Estelle M (1998) Molecular mechanisms of auxin action. Curr Opin Plant Biol 1:434–439

    Article  CAS  PubMed  Google Scholar 

  • Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:484–489

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D (2020) The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol 227:529–544

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Nolan TM, Clark NM, Jiang H, Montes-Serey C, Guo H, Bassham DC, Walley JW, Yin Y (2021) The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. Plant Cell 33:3532–3554

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng M, Yang Y, Feng H, Pan Z, Shen WH, Zhu Y, Dong A (2014) Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37:2128–2138

    Article  CAS  PubMed  Google Scholar 

  • Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RW, Charng YY (2013) Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiol 161:2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Kimberlin AN, Elowsky CG, Liu Y, Gonzalez-Solis A, Cahoon EB, Alfano JR (2019) A plant immune receptor degraded by selective autophagy. Mol Plant 12:113–123

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Pascual C, Klionsky DJ (2016) Autophagy: machinery and regulation. Microb Cell 3:588–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Youn JH, Kim TW (2015) Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8:552–565

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, Ictv Report C (2017) ICTV virus taxonomy profile: geminiviridae. J Gen Virol 98:131–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y, Liu Z, Zhou Y, Peng J, Wang K, Huang X, Xiao S, Zuo J (2018) S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell 71(142–154):e146

    Google Scholar 

  • Zhang Y, Chen Z (2020) Broad and complex roles of NBR1-mediated selective autophagy in plant stress responses. Cells 9:2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, Chen Z (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet 9:e1003196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang J, Yu JQ, Chen Z (2014a) Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci 5:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Yu JQ, Chen Z (2014b) The perplexing role of autophagy in plant innate immune responses. Mol Plant Pathol 15:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang Z, Wang X, Li X, Zhang Z, Fan B, Zhu C, Chen Z (2018) Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Autophagy 14:487–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY22C150007, the Key Research and Development Program of Lishui under Grant No. 2020ZDYF08 and Lishui University Initial Funding under Grant No. QD1503.

Author information

Authors and Affiliations

Authors

Contributions

YZ conceived the idea. YZ, GSX, LS, MJC, CYH, YLY, XYY, SCC, WWOY and ZKX wrote and evaluated the manuscript.

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xia, G., Sheng, L. et al. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. Plant Cell Rep 41, 2125–2138 (2022). https://doi.org/10.1007/s00299-022-02910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02910-w

Keywords

Navigation