Skip to main content
Log in

Repressors: the gatekeepers of phytohormone signaling cascades

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved. In this review, we summarize the various repressor proteins and their methods of regulation. In addition, we also shed light on other post-transcriptional modifications, including protein sumoylation, acetylation, methylation, and S-nitrosylation, which might be involved in repressor regulation. We conclude that repressors are the gatekeepers of phytohormone signaling, allowing transcription of phytohormone-responsive genes only when required and thus serving as a universal mechanism to conserve energy in plants. Finally, we strongly recommend that plant research should be focused further on elucidating the mechanisms regulating repressor abundance or activity, to improve our understanding of phytohormone signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540

    Article  CAS  PubMed  Google Scholar 

  • Briones-Moreno A, Hernandez-Garcia J, Vargas-Chavez C, Romero-Campero FJ, Romero JM, Valverde F, Blazquez MA (2017) Evolutionary analysis of DELLA-associated transcriptional networks. Front Plant Sci. 8:626

    Article  PubMed  PubMed Central  Google Scholar 

  • Bürger M, Chory J (2020) The many models of strigolactone signaling. Trends Plant Sci 25:395–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  CAS  PubMed  Google Scholar 

  • Chen L-T, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5:1318–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J (2019) A single nucleotide mutation in GID1c disrupts its interaction with DELLA 1 and causes a GA-insensitive dwarf phenotype in peach. Plant Biotechnol J 17:1723–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico J, Lorenzo O, García-Casado G, López-Vidriero I, Lozano F, Ponce M (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156

    Article  CAS  PubMed  Google Scholar 

  • Conti L, Nelis S, Zhang C, Woodcock A, Swarup R, Galbiati M, Tonelli C, Napier R, Hedden P, Bennett M (2014) Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev Cell 28:102–110

    Article  CAS  PubMed  Google Scholar 

  • Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • De Cuyper C, Struk S, Braem L, Gevaert K, De Jaeger G, Goormachtig S (2017) Strigolactones, karrikins and beyond. Plant Cell Environ 40:1691–1703

    Article  PubMed  CAS  Google Scholar 

  • Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, Rodriguez L, Rubio S, Park SY, Cutler SR, Rodriguez PL, Marquez JA (2011) Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol 156:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y (2014) DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26:2920–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hill K (2015) Post-translational modifications of hormone-responsive transcription factors: the next level of regulation. J Exp Bot 66:4933–4945

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Major IT, Koo AJ (2018) Modularity in Jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y, Minami E, Ashikari M, Matsuoka M (2005) Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant Cell Physiol 46:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 7:457–461

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152:1109–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129:908–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Lee Y, Park J, Lee N, Choi G (2013) HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol 54:555–572

    Article  CAS  PubMed  Google Scholar 

  • Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ou Y, Zhang Z, Li J, He Y (2018) Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Mol Plant 11:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li W, Ning Y, Shirsekar G, Cai Y, Wang X, Dai L, Wang Z, Liu W, Wang G-L (2012) The U-box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. Plant Physiol 160:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  CAS  Google Scholar 

  • McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-p, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morffy N, Faure L, Nelson DC (2016) Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet 32:176–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu D, Lin X-L, Kong X, Qu G-P, Cai B, Lee J, Jin JB (2019) SIZ1-mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis. Mol Plant 12:215–228

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK, Hill K, Truskina J, Bhosale R, Morris E, Srivastava M (2018) Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362:1407–1410

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Calderon-Villalobos L, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray W, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plant AR, Larrieu A, Causier B (2021) Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. New Phytol 231:963–973

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Prado JS, Piquerez SJ, Bendahmane A, Hirt H, Raynaud C, Benhamed M (2018) Modify the histone to win the battle: chromatin dynamics in plant–pathogen interactions. Front Plant Sci 9:355

    Article  PubMed  PubMed Central  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  CAS  PubMed  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198-s207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  • Schimke RT (1973) Control of enzyme levels in mammalian tissues. Adv Enzymol Relat Areas Mol Biol 37:1973–1187

    Google Scholar 

  • Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien RY, Estelle M (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci USA 110:4834–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Yang W (2017) E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol 58:1461–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Pandey A, Srivastava AK, Tran LSP, Pandey GK (2015) Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 36:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Yadav S, Singh A, Mahima M, Singh A, Gautam V, Sarkar AK (2020) Auxin signaling modulates LATERAL ROOT PRIMORDIUM 1 (LRP 1) expression during lateral root development in Arabidopsis. Plant J 101:87–100

    Article  CAS  PubMed  Google Scholar 

  • Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163:318–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  CAS  PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tromas A, Paque S, Stierlé V, Quettier A-L, Muller P, Lechner E, Genschik P, Perrot-Rechenmann C (2013) Auxin-binding protein 1 is a negative regulator of the SCF TIR1/AFB pathway. Nat Commun 4:1–9

    Article  CAS  Google Scholar 

  • Vera-Sirera F, Gomez MD, Perez-Amador MA (2016) DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. Plant transcription factors. Elesvier, pp 313–328

    Chapter  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams KM, Qie S, Atkison JH, Salazar-Arango S, Diehl JA, Olsen SK (2019) Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nature Commun 10:1–15

    Article  CAS  Google Scholar 

  • Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX (2015) Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 11:e1005143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Peng J (2008) Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal Chem 80:3438–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Yang C (2013) Emerging role of SUMOylation in plant development. Plant Signal Behav 8:e24727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamuro C, Zhu J-K, Yang Z (2016) Epigenetic modifications and plant hormone action. Mol Plant 9:57–70

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M (2019) Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proc Natl Acad Sci USA 116:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol 150:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotech J 15:4–14

    Article  CAS  Google Scholar 

  • Zhao H, Yin CC, Ma B, Chen SY, Zhang JS (2021) Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms. J Integr Plant Biol 63:102–125

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L (2013) D14–SCF D3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Zheng Yang (Northwest A&F University) for helping us in producing the figure and revising the manuscript. This work was supported by the funding from the Science, technology and Innovation Commission of Shenzhen Municipality (JCYJ20190806154009040), the National Natural Science Foundation of China (31872804, 32101670), and the Talents Team Construction Fund of Northwestern Polytechnical University (31020190QD007).

Funding

This work was supported by the funding from the Science, technology and Innovation Commission of Shenzhen Municipality (JCYJ20190806154009040), the National Natural Science Foundation of China (31872804, 32101670), and the Talents Team Construction Fund of Northwestern Polytechnical University (31020190QD007).

Author information

Authors and Affiliations

Authors

Contributions

UA, MSR and KS conceived and designed the work. UA and MSR drafted the manuscript. KS and LW revised the manuscript and produced the figure. BX and XL participated in discussion on the figure of this manuscript and revised the manuscript. KS secured the funding. All authors have read and agreed to submit this version of the manuscript.

Corresponding author

Correspondence to Kai Shu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, U., Rehmani, M.S., Wang, L. et al. Repressors: the gatekeepers of phytohormone signaling cascades. Plant Cell Rep 41, 1333–1341 (2022). https://doi.org/10.1007/s00299-022-02853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02853-2

Keywords

Navigation