Skip to main content
Log in

Glyphosate-induced GhAG2 is involved in resistance to salt stress in cotton

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The transcription of GhAG2 was strongly enhanced by glyphosate treatment. Overexpression of GhAG2 could improve plant tolerance to salt and salicylic acid stress.

Although glyphosate has been widely used as an herbicide over the past decade owing to its high efficacy on weed controls and worldwide commercialization of glyphosate-resistant crops, little is known about the glyphosate-induced responses and transcriptional changes in cotton plants. Here, we report the identification of 26 differentially expressed genes after glyphosate treatment, among which, six highly up-regulated sequences share homology to cotton expressed sequence tags (ESTs) responsive to abiotic stresses. In addition, we cloned GhAG2, a gene whose transcription was strongly enhanced by glyphosate treatment and other abiotic stresses. Transgenic GhAG2 plants showed improved tolerance to salt, and salicylic acid (SA) stress. The results could open the door to exploring the function of the GhAG2 proteins, the glyphosate-induced transcriptional profiles, and the physiological biochemical responses in cotton and other crops. GhAG2 could also be used to improve salt stress tolerance through breeding and biotechnology in crops. Furthermore, these results could provide guidelines to develop a glyphosate-inducible system for controlled expression of targeted genes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Athanasiadis A, Anderluh G, Maček P, Turk D (2001) Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Baek Y, Bobadilla LK, Giacomini DA, Montgomery JS, Murphy BP, Tranel PJ (2021) Evolution of glyphosate-resistant weeds. Rev Env Contam Toxicol PMI. https://doi.org/10.1007/398_2020_55

    Article  Google Scholar 

  • Baena-Gonzalez E (2010) Energy Signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    Article  CAS  PubMed  Google Scholar 

  • Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M (1993) Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res 21:4272–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell AA (1981) Biochemical-mechanisms of disease resistance. Ann Rev Plant Physiol 32:21–81

    Article  CAS  Google Scholar 

  • Brookes G, Taheripour F, Tyner WE (2017) The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8:216–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, Segundo BS (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  CAS  PubMed  Google Scholar 

  • Cebeci O, Budak H (2009) Global expression patterns of three Festuca species exposed to different doses of glyphosate using the affymetrix genechip wheat genome array. Comp Funct Genom. https://doi.org/10.1155/2009/505701

    Article  Google Scholar 

  • Chen DY, Chen QY, Wang DD, Mu YP, Wang MY, Huang JR, Mao YB (2020) Differential transcription and alternative splicing in cotton underly specialized defense responses against pests. Front Plant Sci 11:573131

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuhra M, Traavik T, Bohn T (2013) Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22:251–262

    Article  CAS  PubMed  Google Scholar 

  • Culpepper AS, Webster TM, Sosnoskie LM, York AC (2010) Glyphosate‐resistant palmer amaranth in the United States. Glyphosate resist crops weeds: History, Development, and Management. Hoboken, NJ: John Wiley & Sons, pp 195–212

  • de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ (2017) Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. J Plant Physiol 218:196–205

    Article  PubMed  CAS  Google Scholar 

  • Délye C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176–187

    Article  PubMed  CAS  Google Scholar 

  • Denkovskiene E, Paskevicius S, Werner S, Gleba Y, Razanskiene A (2015) Inducible expression of Agrobacterium Virulence gene VirE2 for stringent regulation of T-DNA transfer in plant transient expression systems. Mol Plant Microbe Interact 28:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Evrard E, Devaux A, Bony S, Burgeot T, Riso R, Budzinski H, Le Du M, Quiniou L, Laroche J (2010) Responses of the European flounder Platichthys flesus to the chemical stress in estuaries: load of contaminants, gene expression, cellular impact and growth rate. Biomarkers 15:111–127

    Article  CAS  PubMed  Google Scholar 

  • Faus I, Zabalza A, Santiago J, Nebauer SG, Royuela M, Serrano R, Gadea J (2015) Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biol 15:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández-Moreno PT, Bastida F, De Prado R (2017) Evidence, mechanism and alternative chemical seedbank-level control of glyphosate resistance of a rigid Ryegrass (Lolium rigidum) biotype from southern Spain. Front Plant Sci 8:450

    PubMed  PubMed Central  Google Scholar 

  • Gaines TA, Zhang WL, Wang DF, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel P, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA 107:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ma W, Lyu X, Cao X, Yao Y (2020) Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries. BMC Plant Biol 20:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Ruiz EÍ, Loureiro Farinós GP, Gómez P, Gutiérrez E, Sánchez FJ, Escorial MC, Ortego F, Chueca MC, Castañera P (2018) Weeds and ground-dwelling predators’ response to two different weed management systems in glyphosate-tolerant cotton: a farm-scale study. PLoS ONE 13:e0191408. https://doi.org/10.1371/journal.pone.0191408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes MP, Le Manac’h SG, Moingt M, Smedbol E, Paquet S, Labrecque M, Lucotte M, Juneau P (2016a) Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic Biochem Physiol 130:65–70

    Article  CAS  PubMed  Google Scholar 

  • Gomes MP, Le Manac’h SG, Moingt M, Smedbol E, Paquet S, Labrecque M, Lucotte M, Juneau P (2016b) Impact of phosphate on glyphosate uptake and toxicity in willow. J Hazard Mater 304:269–279

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Shen W, Zhou G, Huang J, Qian S (1988) Technique of transformation exogenous DNA into plant after pollination-DNA fragments were transferred into embryos via pollen tube. Sci China (b) 6:611–614

    Google Scholar 

  • Gunjegaonkar SM, Shanmugarajan TS (2019) Molecular mechanism of plant stress hormone methyl jasmonate for its anti-inflammatory activity. Plant Signal Behav 14:e1642038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_13

    Chapter  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Asshikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419. https://doi.org/10.1093/jxb/erv436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karn E, Jasieniuk M (2017) Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow. Evol Appl 10:616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley KB, Lambert KN, Hager AG, Riechers DE (2004) Quantitative expression analysis of GH3, a gene induced by plant growth regulator herbicides in soybean. J Agric Food Chem 52:474–478

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Walbot V (2014) Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. Plant J 77:639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kondera E, Teodorczuk B, Ługowska K, Witeska M (2018) Effect of glyphosate-based herbicide on hematological and hemopoietic parameters in commoncarp (Cyprinus carpio L). Fish Physiol Biochem 44:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang X, Li K, Cai Z (2021) Spatially resolved metabolomics and lipidomics reveal salinity and drought-tolerant mechanisms of cottonseeds. J Agric Food Chem 69:8028–8037

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, Perata P (2020) The many facets of hypoxia in plants. Plants (basel) 9:745

    Article  CAS  Google Scholar 

  • Lu W, Li L, Chen M, Zhou ZF, Zhang W, Ping SZ, Yan YL, Wang J, Lin M (2013) Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Mol Biosyst 9:522–530

    Article  CAS  PubMed  Google Scholar 

  • Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150:924–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michoux F, Takasaka K, Boehm M, Nixon PJ, Murray JW (2010) Structure of CyanoP at 2.8 Å: implications for the evolution and function of the PsbP subunit of photosystem II. Biochemistry 49:7411–7413

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154:373–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez A, Kogan M (2003) Glyphosate-resistant Lolium multiflorum in chilean orchards. Weed Res 43:12–19

    Article  Google Scholar 

  • Pline WA, Wilcut JW, Duke SO, Edmisten KL, Wells R (2002) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem 50:506–512

    Article  CAS  PubMed  Google Scholar 

  • Pline WA, Wells R, Little G, Edmisten KL, Wilcut JW (2003) Glyphosate and water-stress effects on fruiting and carbohydrates in glyphosate-resistant cotton. Crop Sci 43:879–885

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-Joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  • Sham A, Moustafa K, Al-Ameri S, Al-Azzawi A, Iratni R, AbuQamar S (2015) Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays. PLoS ONE 10:e0125666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siehl DL, Roe RM (1997) Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. Rev Toxicol 1:37–67

    CAS  Google Scholar 

  • Soares C, Pereira R, Spormann S, Fidalgo F (2019) Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants?—Evaluation of oxidative damage and antioxidant responses in tomato. Env Pollut 247:256–265

    Article  CAS  Google Scholar 

  • Spormann S, Soares C, Fidalgo F (2019) Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J Env Manag 241:226–234

    Article  CAS  Google Scholar 

  • Stavridou E, Voulgari G, Michailidis M, Kostas S, Chronopoulou EG, Labrou NE, Madesis P, Nianiou-Obeidat I (2021) Overexpression of a biotic stress-inducible pvgstu gene activates early protective responses in tobacco under combined heat and drought. Int J Mol Sci 22:2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MT, Lindroth RL (2005) Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhanokho HF, Rajasekaran K (2016) Cotton regeneration in vitro. In: Ramawat K, Ahuja M (eds) Fiber Plants. Sustainable development and biodiversity, 13: 87–110. Springer, Cham. https://doi.org/10.1007/978-3-319-44570-0_6

  • Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Vlad D, Abu-Jamous B, Wang P, Langdale JA (2019) A modular steroid-inducible gene expression system for use in rice. BMC Plant Biol 19:426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Zhang B, Wang Q (2013) Cotton transformation via pollen tube pathway. In: Zhang B (ed) Transgenic cotton methods in molecular biology (Methods and Protocols), vol 958. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-212-4_6

    Chapter  Google Scholar 

  • Wang C, Lin X, Li L, Lin SJ (2016) Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS ONE 11:e0151633. https://doi.org/10.1371/journal.pone.0151633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster TMU, Santos EM (2015) Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and roundup. BMC Genom 16:32

    Article  CAS  Google Scholar 

  • Webster TM, Everest AMPJ, Brecke FJFB, Martin KJGJ, Kelly LEWS, Griffin J, Sanders D, Byrd MJ, Kendig MA, Fisher L (2009) Weed survey-Southern states, 2009: Broadleaf crops subsection (cotton, peanut, soybean, tobacco, and forestry). Proc South Weed Sci Soc 54:244–259

    Google Scholar 

  • Williams S, Friedrich L, Dincher S, Carozzi N, Kessmann H, Ward E, Rylas J (1992) Chemical regulation of Bacillus thuringiensis∂-endotoxin expression in transgenic plants. Nature Biotech 10:540–543

    Article  Google Scholar 

  • Woodburn AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309–312

    Article  CAS  Google Scholar 

  • Yasuor H, Abu-Abied M, Belausov E, Madmony A, Sadot E, Riov J, Rubin B (2006) Glyphosate-induced anther indehiscence in cotton is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation. Plant Physiol 141:1306–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WC, Zhang R, Guo SD (2005) Isolation of glyphosate-induced EST sequences of soybean and cotton. Prog Biotech 25:80–85

    CAS  Google Scholar 

  • Yu WC, Zhang R, Li RZ, Guo SD (2007) Isolation and characterization of glyphosate-regulated genes in soybean seedlings. Plant Sci 172:497–504

    Article  CAS  Google Scholar 

  • Zeng H, Xu H, Liu G, Wei Y, Zhang J, Shi H (2021) Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava. J Hazard Mater 411:125143

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Chen M, Chen XP, Xu ZS, Guan S, Li LC, Li AL, Guo JM, Mao L, Ma YZ (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JT, Liu H, Sun J, Li B, Zhu Q, Chen SL, Zhang HX (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7:e30355. https://doi.org/10.1371/journal.pone.0030355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JM, Williams CC, Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, An K, Song W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z (2021) Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 186:1951–1969. https://doi.org/10.1093/plphys/kiab187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Z, Furuya T, Ueno K, Yamaguchi H, Hitachi K, Tsuchida K, Tani M, Tian J, Komatsu S (2020) Proteomic analysis of irradiation with millimeter waves on soybean growth under flooding conditions. Int J Mol Sci 21:486. https://doi.org/10.3390/ijms21020486

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Patzoldt WL, Shealy RT, Vodkin LO, Clough SJ, Tranel PJ (2008) Transcriptome response to glyphosate in sensitive and resistant soybean. J Agric Food Chem 56:6355–6363

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31201245, 31571825, 31771850).

Author information

Authors and Affiliations

Authors

Contributions

WY, RZ, and SG conceived and designed the research plans. WY and ZX performed most of the experiments. XZ provided technical assistance to WY. WY and JL analyzed the data and wrote the article with contributions of all the authors. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Rui Zhang, Jiping Liu or Sandui Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Andrew Leigh Eamens.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Xue, Z., Zhao, X. et al. Glyphosate-induced GhAG2 is involved in resistance to salt stress in cotton. Plant Cell Rep 41, 1131–1145 (2022). https://doi.org/10.1007/s00299-022-02844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02844-3

Keywords

Navigation