Skip to main content
Log in

Ca2+–CBL–CIPK: a modulator system for efficient nutrient acquisition

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is a universal second messenger essential for the growth and development of plants in normal and stress situations. In plants, the proteins, CBL (calcineurin B-like) and CIPK (CBL-interacting protein kinase), form one of the important Ca2+ decoding complexes to decipher Ca2+ signals elicited by environmental challenges. Multiple interactors distinguish CBL and CIPK protein family members to form a signaling network for regulated perception and transduction of environmental signals, e.g., signals generated under nutrient stress conditions. Conservation of equilibrium in response to varying soil nutrient status is an important aspect for plant vigor and yield. Signaling processes have been reported to observe nutrient fluctuations as a signal responsible for regulated nutrient transport adaptation. Recent studies have identified downstream targets of CBL–CIPK modules as ion channels or transporters and their association in signaling nutrient disposal including potassium, nitrate, ammonium, magnesium, zinc, boron, and iron. Ca2+–CBL–CIPK pathway modulates ion transporters/channels and hence maintains a homeostasis of several important plant nutrients in the cytosol and sub-cellular compartments. In this article, we summarize recent literature to discuss the role of the Ca2+–CBL–CIPK pathway in cellular osmoregulation and homeostasis on exposure to nutrient excess or deprived soils. This further establishes a link between taking up the nutrient in the roots and its distribution and homeostasis during the generation of signal for the development and survival of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  CAS  Google Scholar 

  • Aoyama S, Huarancca Reyes T, Guglielminetti L, Lu Y, Morita Y, Sato T, Yamaguchi J (2014) Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant Cell Physiol 55:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, ABA, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  CAS  PubMed  Google Scholar 

  • Cherel I, Lefoulon C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot 65:833–848

    Article  CAS  PubMed  Google Scholar 

  • Chinchole M, Pathak RK, Singh UM, Kumar A (2017) Molecular characterization of EcCIPK24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech. https://doi.org/10.1007/s13205-017-0874-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wiren N, Kunze R et al (2015) Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol 169:2832–2847. https://doi.org/10.1104/pp.15.01152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubeaux G et al (2018) Metal sensing by the IRT1 transporter receptor orchestrates its own degradation and plant metal nutrition. Mol Cell 69:953–964

    Article  CAS  PubMed  Google Scholar 

  • Feijo JA, Wudick MM (2018) Calcium is life. J Exp Bot 69(17):4147

    Article  CAS  PubMed Central  Google Scholar 

  • Gao H, Wang C, Li L, Fu D, Zhang Y, Yang P, Zhang T, Wang C (2020) A novel role of the calcium sensor CBL1 in response to phosphate deficiency in Arabidopsis thaliana. J Plant Physiol. https://doi.org/10.1016/j.jplph.2020.153266

    Article  PubMed  Google Scholar 

  • Gratz R et al (2019) CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling. Dev Cell 48:726–740

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Beltran E et al (2017) A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiol 173:836–852

    Article  CAS  PubMed  Google Scholar 

  • Held K, Pascaud F, Eckert C et al (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21(7):1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Schiavo FL, Katsuhara M, Schroeder JI (2011) K+ Transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ Ions. Plant Physiol 156(3):1493–1507. https://doi.org/10.1104/pp.110.168047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. https://doi.org/10.1038/srep00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594

    Article  CAS  PubMed  Google Scholar 

  • Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 56:81–95

    Article  CAS  PubMed  Google Scholar 

  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496. https://doi.org/10.1105/tpc.113.122101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B-G et al (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484. https://doi.org/10.1111/j.1365-313X.2007.03249.x

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Parker DR (1987) Cation amelioration of aluminum toxicity in wheat. Plant Physiol 83:546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K et al (2010) Nitrate-regulated auxin transport by Nrt1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    Article  CAS  PubMed  Google Scholar 

  • Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, Nieves-Cordones M, Botella MA, Rubio F (2020) Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9. J Exp Bot 71(16):5053–5060. https://doi.org/10.1093/jxb/eraa212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang X, Chen J, Gao J, Zhou X, Kuai B (2016) CCX1, a putative cation/Ca2+ exchanger, participates in regulation of reactive oxygen species homeostasis and leaf senescence. Plant Cell Physiol 57(12):2611–2619. https://doi.org/10.1093/pcp/pcw175

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yu M, Du XQ, Wang ZF, Wu WH, Quintero FJ et al (2017) NRT1.5/NPF7.3 functions as a proton-coupled H(+)/K(+) antiporter for K(+) loading into the xylem in Arabidopsis. Plant Cell 29:2016–2026. https://doi.org/10.1105/tpc.16.00972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch J, Polito VS, Läuchli A (1989) Salinity stress increases cytoplasmic Ca activity in maize root protoplasts. Plant Physiol 90:1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191:302–307

    Article  CAS  Google Scholar 

  • Maierhofer T, Diekmann M, Offenborn JN, Lind C, Bauer H, Hashimoto K, Al-Rasheid KAS, Luan S, Kudla J, Geiger D, Hedrich R (2014) Site—and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal. https://doi.org/10.1126/scisignal.2005703 (PMID: 25205850)

    Article  PubMed  Google Scholar 

  • Manishankar P, Wang N, Köster P, Alatar AA, Kudla J (2018) Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot 69(17):4215–4226. https://doi.org/10.1093/jxb/ery201

    Article  CAS  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena KM, Vishwakarma NK, Tripathi V, Chattopadhyay D (2019) CBL-interacting protein kinase 25 contributes to root meristem development. J Exp Bot 70(1):133–147

    Article  CAS  Google Scholar 

  • Mogami J, Fujita Y, Yoshida T, Tsukiori Y, Nakagami H, Nomura Y, Fujiwara T, Nishida S, Yanagisawa S, Ishida T, Takahashi F, Morimoto K, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2015) Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Plant Physiol 167(3):1039–1057. https://doi.org/10.1104/pp.114.249870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Miller AJ, Alemán F, Martínez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68(6):521–532

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Rodenas R, Lara A, Martinez V, Rubio F (2019) The combination of K(+) deficiency with other environmental stresses: what is the outcome? Physiol Plant 165:264–276. https://doi.org/10.1111/ppl.12827

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK (2008) Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol Mol Biol Plants 14:51–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Mahiwal S (2020) Role of potassium in plants. Springer, Cham (SpringerBriefs in Plant Science ISBN 978-3-030-45953-6 )

    Book  Google Scholar 

  • Pandey GK, Sanyal SK (2020) Functional dissection of calcium homeostasis and transport machinery in plants. Springer Nature, New York. https://doi.org/10.1007/978-3-030-58502-0 (SpringerBriefs in Plant Science ISBN 978-3-030-58501-3)

    Book  Google Scholar 

  • Pandey GK, Reddy MK, Sopory SK, Singla-Pareek S (2002) Calcium homeostasis in plants: role of calcium binding proteins in abiotic stress tolerance. Indian J Biotech 1:135–157

    CAS  Google Scholar 

  • Pandey GK, Kim K-N, Cheong YH, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor CBL9 modulates ABA sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, Luan S (2007) CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17:411–421

    Article  CAS  PubMed  Google Scholar 

  • Pandey GK, Kanwar P, Pandey A (2014) Global comparative analysis of CBL-CIPK gene families in plants. Springer, Cham (SpringerBriefs in Plant Science ISBN-13: 978-3319090771)

    Book  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM (2019) Regulation of K+ nutrition in plants. Front Plant Sci 10:281. https://doi.org/10.3389/fpls.2019.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH (2013) Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J 74:258–266

    Article  CAS  PubMed  Google Scholar 

  • Rodenas R, Garcia-Legaz MF, Lopez-Gomez E, Martinez V, Rubio F, Angeles Botella M (2017) NO3(−), PO4(3)(−) and SO4(2)(−) deprivation reduced LKT1-mediated low-affinity K(+) uptake and SKOR-mediated K(+) translocation in tomato and Arabidopsis plants. Physiol Plant 160:410–424. https://doi.org/10.1111/ppl.12558

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K uptake in the high-affinity range of concentrations. Physiol Plant 134(4):598–608

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Fon M, Rodenas R, Nieves-Cordones M, Aleman F, Rivero RM et al (2014) A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiol Plant 152:558–570. https://doi.org/10.1111/ppl.12205

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SK, Pandey A (2015) Pandey GK (2015) The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiol Plant. https://doi.org/10.1111/ppl.12344

    Article  PubMed  Google Scholar 

  • Sanyal SK, Kanwar P, Samtani H, Kaur K, Jha SK, Pandey GK (2017) Alternative splicing of CIPK3 results in distinct target selection to propagate ABA signaling in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01924 (PMID: 29225607; PMCID: PMC5705611)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanyal SK, Mahiwal S, Nambiar DM, Pandey GK (2020) CBL-CIPK module-mediated phosphoregulation: facts and hypothesis. Biochem J 477(5):853–871

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK (2016) Chapter two-plant stress responses mediated by CBL–CIPK phosphorylation network. In: Lin C, Luan S (eds) The enzymes. Academic Press, Cambridge, pp 31–64. https://doi.org/10.1016/bs.enz.2016.08.002 (ISSN 1874-6047, ISBN 9780128047521)

    Chapter  Google Scholar 

  • Sasaki A, Yamaji Y, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Véry AA (2012) The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity. Plant Physiol 160:498–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2019) Effects of salicylic acid on hormonal cross talk, fatty acids profile, and ions homeostasis from salt-stressed safflower. J Plant Interact 14:340–346. https://doi.org/10.1080/17429145.2019.1635660

    Article  CAS  Google Scholar 

  • Shankar A, Srivastava AK, Yadav AK, Sharma M, Pandey A, Raut CC, Das KM, Suprasanna P, Pandey GK (2014) Whole genome transcriptome analysis of rice seedling reveal alterations in Ca2+ ion signaling and homeostasis in response to Ca2+ deficiency. Cell Calcium 55:155–165

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Pandey GK (2018) Editorial: genomics and functional genomics of stress-mediated signaling in plants: volume II. Curr Genomics 19(1):2–3. https://doi.org/10.2174/138920291901171201141313

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, Pandey A, Kapoor S, Tyagi AK, Pandey GK (2014) Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS J 281:894–915

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Yadav AK, Kaur K, Sanyal SK, Jha SK, Fernandes JL, Sharma P, Tokas I, Pandey A, Luan S, Pandey GK (2018) Protein phosphatase 2C, AP2C1 interacts with and negatively regulates the function of CIPK9 under potassium deficient conditions in Arabidopsis. J Exp Bot 69(16):4003–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Shankar A, Nalini Chandran AK, Sharma M, Jung KH, Suprasanna P (2020) Pandey GK emerging concepts of potassium homeostasis in plants. J Exp Bot 71(2):608–619

    Article  CAS  PubMed  Google Scholar 

  • Straub T, Ludewig U, Neuhäuser B (2017) The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 17(29):409–422

    Article  CAS  Google Scholar 

  • Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S (2015) Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci USA 112:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang RJ, Wang C, Li K, Luan S (2020a) The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci 25(6):604–617. https://doi.org/10.1016/j.tplants.2020.01.009 (PMID: 32407699)

    Article  CAS  PubMed  Google Scholar 

  • Tang RJ, Zhao FG, Yang Y, Wang C, Li K, Kleist TJ, Lemaux PG, Luan S (2020b) A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nature Plants. https://doi.org/10.1038/s41477-020-0621-7

    Article  PubMed  PubMed Central  Google Scholar 

  • ten Hoopen F, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, Jahn TP (2010) Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J Exp Bot 61:2303–2315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokas I, Pandey A, Pandey GK (2013) Role of calcium-mediated CBL–CIPK network in plant mineral nutrition and abiotic stress. In: Rout G, Das A (eds) Molecular stress physiology of plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_10

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58(5):778–790

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Shankar A, Jha SK, Kanwar P, Pandey A, Pandey GK (2015) A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Sci Rep 26(5):17117

    Article  CAS  Google Scholar 

  • Yadav AK, Jha SK, Sanyal SK, Luan S, Pandey GK (2018) Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9. Biochem J 475(16):2621–2636. https://doi.org/10.1042/BCJ20180372

    Article  CAS  PubMed  Google Scholar 

  • Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J (2017) Arabidopsis CBL-interacting protein kinases regulate carbon/nitrogen-nutrient response by phosphorylating ubiquitin ligase ATL31. Mol Plant 10:605–618

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Yamaji N, Ma JF (2020) Altered root structure affects both expression and cellular localization of transporters for mineral element uptake in rice. Plant Cell Physiol 61(3):481–491. https://doi.org/10.1093/pcp/pcz213

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Peng Y, Li J, Tian X, Chen Z (2019) OsMGT1 confers resistance to magnesium deficiency by enhancing the import of Mg in rice. Int J Mol Sci 20:207. https://doi.org/10.3390/ijms2001020

    Article  PubMed Central  Google Scholar 

  • Zhou X et al (2015) SOS2-like protein kinase5, an SNF1-related protein kinase3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC acid-insensitive5. Plant Physiol 168:659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research work in our lab is supported by Delhi University (IoE/FRP grant), Board of Research in Nuclear Sciences (BRNS), Department of Biotechnology (DBT), Science and Engineering Research Board (SERB), Council for Scientific and Industrial Research (CSIR), India. PV is thankful to CSIR, India for CSIR-SRA fellowship.

Author information

Authors and Affiliations

Authors

Contributions

GKP conceived the review. PV, SKS, and GKP wrote and revised the manuscript.

Corresponding author

Correspondence to Girdhar K. Pandey.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by Aryadeep Roychoudhury.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Sanyal, S.K. & Pandey, G.K. Ca2+–CBL–CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Rep 40, 2111–2122 (2021). https://doi.org/10.1007/s00299-021-02772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02772-8

Keywords

Navigation