Skip to main content
Log in

Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita .

Abstract

Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC (2008) Genome sequence of the metazoan plant–parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915

    CAS  PubMed  Google Scholar 

  • Atkinson LE, Stevenson M, McCoy CJ, Marks NJ, Fleming C, Zamanian M, Day TA, Kimber MJ, Maule AG, Mousley A (2013) Flp-32 ligand/receptor silencing phenocopy faster plant pathogenic nematodes. PLoS Pathog 9(2):1003169

    Google Scholar 

  • Bakhetia M, Urwin PE, Atkinson HJ (2008) Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. Int J Parasitol 38(13):1589–1997

    CAS  PubMed  Google Scholar 

  • Banakar P, Sharma A, Lilley CJ, Gantasala NP, Kumar M, Rao U (2015) Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene on Meloidogyne incognita. Nematology 17(2):155–167

    Google Scholar 

  • Banakar P, Hada A, Papolu PK, Rao U (2020) Simultaneous RNAi knockdown of three FMRFamide-Like Peptide Genes, Mi-flp1, Mi-flp12, and Mi-flp18 provides resistance to root-knot nematode Meloidogyne Incognita. Front Microbiol 11:2690

    Google Scholar 

  • Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A (2017) RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front Plant Sci 8:834

    PubMed  PubMed Central  Google Scholar 

  • Bhardwaj A, Thapliyal S, Dahiya Y, Babu K (2018) FLP-18 functions through the G-protein-coupled receptors NPR-1 and NPR-4 to modulate reversal length in Caenorhabditis elegans. J Neurosci 38(20):4641–4654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blok VC, Jones JT, Phillips MS, Trudgill DL (2008) Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays 30(3):249–259

    CAS  PubMed  Google Scholar 

  • BybdJr DW, Kirkpatrick T, Barker K (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15(1):142

    Google Scholar 

  • Chan YL, He Y, Hsiao TT, Wang CJ, Tian Z, Yeh KW (2015) Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita. Plant Sci 231:74–81

    CAS  PubMed  Google Scholar 

  • Chaudhary S, Dutta TK, Shivakumara TN, Rao U (2019a) RNAi of esophageal gland-specific gene Mi-msp-1 alters early stage infection behaviour of root-knot nematode Meloidogyne Incognita. J Gen Plant Pathol 85(3):232–242

    CAS  Google Scholar 

  • Chaudhary S, Dutta TK, Tyagi N, Shivakumara TN, Papolu PK, Chobhe KA, Rao U (2019b) Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant. Transgenic Res 28(3):327–340

    CAS  PubMed  Google Scholar 

  • Dalzell JJ, McMaster S, Fleming CC, Maule AG (2010) Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int J Parasitol 40(1):91–100

    CAS  PubMed  Google Scholar 

  • Danchin EG, Arguel MJ, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso MN, Da Rocha M, Da Silva C, Nottet N, Labadie K, Guy J (2013) Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathog 9(10):e1003745

    PubMed  PubMed Central  Google Scholar 

  • Dash M, Dutta TK, Phani V, Papolu PK, Shivakumara TN, Rao U (2017) RNAi-mediated disruption of neuropeptide genes, nlp-3 and nlp-12, cause multiple behavioral defects in Meloidogyne incognita. Biochem Biophys Res Commun 490:933–940

    CAS  PubMed  Google Scholar 

  • de Souza Júnior JD, Coelho RR, Lourenço IT, da Rocha FR, Viana AA, de Macedo LL, da Silva MC, Carneiro RM, Engler G, de Almeida-Engler J, Grossi-de-Sa MF (2013) Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS ONE 8(12):85364

    Google Scholar 

  • Dinh PTY, Zhang L, Brown CR, Elling AA (2014) Plant mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring. Nematology 16:669–682

    CAS  Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103(11):1092–1102

    PubMed  Google Scholar 

  • Fróna D, Szenderák J, Harangi-Rákos M (2019) The challenge of feeding the world. Sustainability 11(20):5816

    Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180(1):27–44

    CAS  PubMed  Google Scholar 

  • Gantasala NP, Papolu PK, Thakur PK, Kamaraju D, Sreevathsa R, Rao U (2013) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Res Notes 6(1):1–11

    Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:1–7

    Google Scholar 

  • Gouda K, Matsunaga Y, Iwasaki T, Kawano T (2010) An altered method of feeding RNAi that knocks down multiple genes simultaneously in the nematode Caenorhabditis elegans. Biosci Biotechnol Biochem 74(11):2361–2365

    CAS  PubMed  Google Scholar 

  • Hada A, Kumari C, Phani V, Singh D, Chinnusamy V, Rao U (2020) Host-induced silencing of FMRFamide-like peptide genes, flp-1 and flp-12, in rice impairs reproductive fitness of the root-knot nematode Meloidogyne graminicola. Front Plant Sci 11:894

    PubMed  PubMed Central  Google Scholar 

  • Hada A, Patil BL, Bajpai A, Kesiraju K, Dinesh-Kumar S, Paraselli B, Sreevathsa R, Rao U (2021) Micro RNA-induced gene silencing strategy for the delivery of siRNAs targeting Meloidogyne incognita in a model plant Nicotiana benthamiana. Pest Manag Sci. https://doi.org/10.1002/ps.6384

    Article  PubMed  Google Scholar 

  • Hewezi T, Baum TJ (2013) Manipulation of plant cells by cyst and rootknot nematode effectors. Mol Plant Microbe Interact 26:9–16

    CAS  PubMed  Google Scholar 

  • Huang G, Gao B, Maier T, Allen R, Davis EL, Baum TJ et al (2003) A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol Plant-Microbe in 16:376–381

    CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iberkleid I, Vieira P, de Almeida EJ, Firester K, Spiegel Y, Horowitz SB (2013) Fatty acid and retinol-binding Protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS ONE 8:e64586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HM, Alkharouf NW, Meyer SL, Aly MA, Gamal EAK (2011) Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Exp Parasitol 127:90–99

    CAS  PubMed  Google Scholar 

  • Johnston MJG, McVeigh P, McMaster S, Fleming CC, Maule AG (2010) FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. J Helminthol 84(3):253–265

    CAS  PubMed  Google Scholar 

  • Joshi I, Kumar A, Singh AK, Kohli D, Raman KV, Sirohi A, Chaudhury A, Jain PK (2019) Development of nematode resistance in Arabidopsis by HD-RNAi-mediated silencing of the effector gene Mi-msp2. Sci Rep 9(1):1–11

    Google Scholar 

  • Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21(4):1233–1243

    CAS  PubMed  Google Scholar 

  • Koller E, Propp S, Murray H, Lima W, Bhat B, Prakash TP, Allerson CR, Swayze EE, Marcusson EG, Dean NM (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res 34:4467–4476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Maule AG, Mousley A, Marks NJ, Day TA, Thompson DP, Geary TG, Halton DW (2002) Neuropeptide signaling systems-potential drug targets for parasite and pest control. Curr Top Med Chem 2(7):733–758

    CAS  PubMed  Google Scholar 

  • McCulloch KA, Zhou K, Jin Y (2020) Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans. PLoS ONE 15(6):e0233991

    CAS  PubMed  PubMed Central  Google Scholar 

  • McVeigh P, Geary TG, Marks NJ, Maule AG (2006) The FLP-side of nematodes. Trends Parasitol 22(8):385–396

    CAS  PubMed  Google Scholar 

  • Min K, Kang J, Lee J (2010) A modified feeding RNAi method for simultaneous knockdown of more than one gene in Caenorhabditis elegans. Biotechniques 48(3):229–232

    CAS  PubMed  Google Scholar 

  • Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL (2013) Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199(4):879–894

    PubMed  Google Scholar 

  • Morris R, Wilson L, Sturrock M, Warnock ND, Carrizo D, Cox D, Maule AG, Dalzell JJ (2017) A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathog 13(3):1006185

    Google Scholar 

  • Mutlu AS, Gao SM, Zhang H, Wang MC (2020) Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat Commun 11(1):1–15

    Google Scholar 

  • Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J, Yang G, Jian H (2016) Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep 6(1):1–3

    CAS  Google Scholar 

  • Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65(3):304–319

    CAS  PubMed  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode Meloidogyne incognita. PLoS ONE 8(11):80603

    Google Scholar 

  • Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U (2016) Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode Meloidogyne Incognita. Front Plant Sci 7:1122

    PubMed  PubMed Central  Google Scholar 

  • Papolu PK, Dutta TK, Hada A, Singh D, Rao U (2020) The production of a synthetic chemodisruptive peptide in planta precludes Meloidogyne incognita multiplication in Solanum melongena. Physiol Mol Plant 112:101542

    CAS  Google Scholar 

  • Park J, Choi W, Dar AR, Butcher RA, Kim K (2019) Neuropeptide signaling regulates pheromone-mediated gene expression of a chemoreceptor gene in C. elegans. Mol Cells 42(1):28

    CAS  PubMed  Google Scholar 

  • Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I (2014) The FMRFamide-like peptide family in nematodes. Front Endocrinol 5:90

    Google Scholar 

  • Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XS (2011) The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147(4):922–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roderick H, Urwin PE, Atkinson HJ (2018) Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnol J 16:520–529

    CAS  PubMed  Google Scholar 

  • Rogers C, Reale V, Kim K, Chatwin H, Li C, Evans P, de Bono M (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6(11):1178–1185

    CAS  PubMed  Google Scholar 

  • Rosso MN, Dubrana MP, Cimbolini N, Jaubert S, Abad P (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant Microbe in 18(7):615–620

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Dis 64:34–41

    Google Scholar 

  • Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC (1983) The international Meloidogyne project-its goals and accomplishments. Annu Rev Phytopathol 21(1):271–288

    Google Scholar 

  • Shivakumara TN, Papolu PK, Dutta TK, Kamaraju D, Chaudhary S, Rao U (2016) RNAi-induced silencing of an effector confers transcriptional oscillation in another group of effectors in the root-knot nematode Meloidogyne Incognita. Nematology 18(7):857–870

    CAS  Google Scholar 

  • Shivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevathsa R, Singh B, Manjaiah KM, Rao U (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall-modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473

    PubMed  PubMed Central  Google Scholar 

  • Shivakumara TN, Somvanshi VS, Phani V, Chaudhary S, Hada A, Budhwar R, Shukla RN, Rao U (2019) Meloidogyne incognita (Nematoda: Meloidogynidae) sterol-binding protein Mi-SBP-1 as a target for its management. Inter J Parasitol 49(13–14):1061–1073

    CAS  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    CAS  PubMed  Google Scholar 

  • Starr JL, Bridge J, Cook R (2002) Resistance to plant-parasitic nematodes: history, current use and future potential. In: Starr JL (ed) Plant resistance to parasitic nematodes. Springer, pp 1–22

    Google Scholar 

  • Tischler J, Lehner B, Chen N, Fraser AG (2006) Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol 7(8):1–3

    Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39(1):53–77

    CAS  PubMed  Google Scholar 

  • Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204(4):472–479

    CAS  PubMed  Google Scholar 

  • Walawage SL, Britton MT, Leslie CA, Uratsu SL, Li Y, Dandekar AM (2013) Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics 14:668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warnock ND, Wilson L, Patten C, Fleming CC, Maule AG, Dalzell JJ (2017) Nematode neuropeptides as transgenic nematicides. PLoS Pathog 13(2):e1006237

    PubMed  PubMed Central  Google Scholar 

  • Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38

    Google Scholar 

  • Xie J, Li S, Mo C, Wang G, Xiao X, Xiao Y (2016) A novel Meloidogyne incognita effector Misp12 suppresses plant defense response at latter stages of nematode parasitism. Front Plant Sci 7:964

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong GY (2013) Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS ONE 8:e69463

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are acknowledged the Department of Biotechnology (DBT), Government of India for financial support.

Funding

Funding from the Department of Biotechnology (DBT), Government of India to UR through grant number BT/PR5908/AGR/36/727/2012 is acknowledged. Authors also acknowledge the financial support received from DBT-COE project BT/PR-18924/COE/34/48/2017

Author information

Authors and Affiliations

Authors

Contributions

UR: conceptualization, supervision, and fund acquisition. AH and PKP: plant transformation and molecular characterization. DS and AR: assisted with in vitro studies. PB: design the constructs. AH: nematode bioassays, data analysis, and wrote the original draft of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Uma Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Zhanyuan Jon Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hada, A., Singh, D., Papolu, P.K. et al. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. Plant Cell Rep 40, 2287–2302 (2021). https://doi.org/10.1007/s00299-021-02767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02767-5

Keywords

Navigation