Skip to main content
Log in

Pyramiding ascorbate–glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Stacking Glutathione–Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum.

Abstract

Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52

    Google Scholar 

  • Aboul-Maaty NA-F, Oraby HA-S (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Nat Res Centre 43:1–10

    Google Scholar 

  • AdusePoku S, NkachukwuChukwurah P, Aung HH, Nakamura I (2020) Over-expression of a melon Y3SK2-type LEA gene confers drought and salt tolerance in transgenic tobacco plants. Plants 9:1749

    Google Scholar 

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38:70–82

    CAS  Google Scholar 

  • Bai Y, Kissoudis C, Yan Z, Visser RG, van der Linden G (2018) Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93:781–793

    CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Biradar H, Karan R, Subudhi PK (2018) Transgene pyramiding of salt responsive protein 3–1 (SaSRP3-1) and SaVHAc1 from Spartina alterniflora L. enhances salt tolerance in rice. Front Plant Sci 9:1304

    PubMed  PubMed Central  Google Scholar 

  • Boro D (2020) Molecular and physiological analysis of transgenic rice harbouring chimeric PDH47 gene against abiotic stress tolerance

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Che Y, Zhang N, Zhu X, Li S, Wang S, Si H (2020) Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Sci Horticult 261:108949

    CAS  Google Scholar 

  • Chen H-C, Zhang S-L, Wu K-J, Li R, He X-R, He D-N, Huang C, Wei H (2020) The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch Under Cd stress. Ecotoxicol Environ Saf 187:109790

    CAS  PubMed  Google Scholar 

  • Chiang C-M, Chen C-C, Chen S-P, Lin K-H, Chen L-R, Su Y-H, Yen H-C (2017) Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis. J Plant Res 130:373–386

    CAS  PubMed  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Esawi MA, Alayafi AA (2019) Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes 10:56

    PubMed Central  Google Scholar 

  • Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN, Ahmad P (2020) Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants 9:104

    CAS  PubMed Central  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2000) Tansley review No. 112: oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    CAS  Google Scholar 

  • Furukawa R, Aso M, Fujita T, Akimoto S, Tanaka R, Tanaka A, Yokono M, Takabayashi A (2019) Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. J Plant Res 132:867–880

    CAS  PubMed  Google Scholar 

  • Gao J-J, Zhang Z, Peng R-H, Xiong A-S, Xu J, Zhu B, Yao Q-H (2011) Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38:205–211

    CAS  PubMed  Google Scholar 

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA (2020) The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168:98–117

    CAS  PubMed  Google Scholar 

  • Gerten D, Heck V, Jägermeyr J, Bodirsky BL, Fetzer I, Jalava M, Kummu M, Lucht W, Rockström J, Schaphoff S (2020) Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat Sustain 3:200–208

    Google Scholar 

  • Guan Q, Liao X, He M, Li X, Wang Z, Ma H, Yu S, Liu S (2017) Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress. PLoS One 12:e0186052

    PubMed  PubMed Central  Google Scholar 

  • Guo Z, Ou W, Lu S-y, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    CAS  PubMed  Google Scholar 

  • Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2018) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ 41:1186–1200

    CAS  PubMed  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Tanveer M (2020) Salt and drought stress tolerance in plants (Signaling networks and adaptive mechanisms Series), Hasanuzzaman, Mirza, Tanveer, Mohsin (Eds.) Springer Nature

  • He F, Li HG, Wang JJ, Su Y, Wang HL, Feng CH, Yang Y, Niu MX, Liu C, Yin W (2019) Pe STZ 1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating Pe APX 2. Plant Biotechnol J 17:2169–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol 25:1285–1295

    CAS  Google Scholar 

  • Hu W, Yan X, He Y, Ye X (2018) Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves. Photosynthetica 56:1297–1303

    CAS  Google Scholar 

  • Huihui Z, Yue W, Xin L, Guoqiang H, Yanhui C, Zhiyuan T, Jieyu S, Nan X, Guangyu S (2020) Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol Environ Saf 190:110164

    PubMed  Google Scholar 

  • Jakovljević D, Stanković M (2020) Adaptive strategies of plants under adverse environment: mitigating effects of antioxidant system, In: plant ecophysiology and adaptation under climate change: mechanisms and perspectives II, Springer, pp 163–186

  • James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM (2018) Concurrent overexpression of OsGS1; 1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 9:786

    PubMed  PubMed Central  Google Scholar 

  • Kaur P, Bansal K (2010) Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation. Biol Plant 54:344–348

    CAS  Google Scholar 

  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 168:256–277

    CAS  PubMed  Google Scholar 

  • Kim Y-S, Kim I-S, Boyd JS, Taton A, Golden JW, Yoon H-S (2017) Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea. Biotech Lett 39:1499–1507

    CAS  Google Scholar 

  • Kohli SK, Khanna K, BhardwajAbd Allah AhmadCorpas REFPFJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8:641

    CAS  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  Google Scholar 

  • Krishna R, Ansari WA, Jaiswal DK, Singh AK, Verma JP, Singh M (2021) Co-overexpression of AtDREB1A and BcZAT12 increases drought tolerance and fruit production in double transgenic tomato (Solanum lycopersicum) plants. Environ Exp Bot 184:104396

    CAS  Google Scholar 

  • Li X, Ye J, Munir S, Yang T, Chen W, Liu G, Zheng W, Zhang Y (2019) Biosynthetic gene pyramiding leads to ascorbate accumulation with enhanced oxidative stress tolerance in tomato. Int J Mol Sci 20:1558

    CAS  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Ltd 11(5):591–592

    CAS  Google Scholar 

  • Liu D, He S, Song X, Zhai H, Liu N, Zhang D, Ren Z, Liu Q (2015) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tiss Organ Cult (PCTOC) 120:701–715

    CAS  Google Scholar 

  • Lukić N, Kukavica B, Davidović-Plavšić B, Hasanagić D, Walter J (2020) Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environ Exp Bot 178:104166

    Google Scholar 

  • Majumder RR, Sakhale S, Yadav S, Sandhu N, Hassan L, Hossain MA, Kumar A (2021) Molecular breeding for improving drought tolerance in rice: recent progress and future perspectives. Molecular breeding for rice abiotic stress tolerance and nutritional quality, pp 53–74

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, Li H, Ye Z (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6:1–20

    Google Scholar 

  • Rana Munns Matthew, Gilliham, (2015) Salinity tolerance of crops – what is the cost? New Phytologist 208(3):668–673. https://doi.org/10.1111/nph.13519

  • Murshed R, Lopez-Lauri F, Keller C, Monnet F, Sallanon H (2008) Acclimation to drought stress enhances oxidative stress tolerance in Solanum Lycopersicum L. fruits. Plant Stress 2:145–151

    Google Scholar 

  • Mushtaq U, Baba R, Parray AA, Bhat HF, Saleem S, Manzoor U, Kuchay S, Wani L, Khanday FA (2014) Mitogen activated protein kinase kinase-4 upregulation is a frequent event in human stomach and colon cancers. Proteins 8:10

    Google Scholar 

  • Mwando E, Angessa TT, Han Y, Li C (2020) Salinity tolerance in barley during germination—homologs and potential genes. J Zhejiang Univer Sci B 21:93–121

    CAS  Google Scholar 

  • Parkash V, Singh S (2020) A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12:3945

    CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    CAS  PubMed  Google Scholar 

  • Qi Q, Yanyan D, Yuanlin L, Kunzhi L, Huini X, Xudong S (2020) Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci 299:110609

    CAS  PubMed  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    CAS  Google Scholar 

  • Salika, Ramazan Hilal Ahmad, Qazi Zahoor Ahmad, Dar Riffat, John (2021) Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol Plants 27(6):1395–1412. https://doi.org/10.1007/s12298-021-01020-3

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Charagh S, Razzaq A, Javed R, Khan RSA, Hasanuzzaman M (2020) Brassicaceae plants response and tolerance to drought stress: physiological and molecular interventions. The plant family brassicaceae. Springer, Singapore, pp 229–261

    Google Scholar 

  • Ren J, Duan W, Chen Z, Zhang S, Song X, Liu T, Hou X, Li Y (2015) Overexpression of the monodehydroascorbate reductase gene from non-heading Chinese cabbage reduces ascorbate level and growth in transgenic tobacco. Plant Mol Biol Rep 33:881–892

    CAS  Google Scholar 

  • Sabagh AE, Hossain A, Islam MS, Barutcular C, Hussain S, Hasanuzzaman M, Akram T, Mubeen M, Nasim W, Fahad S (2019) Drought and salinity stresses in barley: consequences and mitigation strategies. Aust J Crop Sci 13:810–820

    Google Scholar 

  • Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, Ahuja PS, Singh AK (2017) Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol Biol Rep 35:504–518

    CAS  Google Scholar 

  • Shafi A, Gill T, Zahoor I, Ahuja PS, Sreenivasulu Y, Kumar S, Singh AK (2019) Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep 46:1985–2002

    CAS  PubMed  Google Scholar 

  • Anjali, Shailani Rohit, Joshi Sneh Lata, Singla‐Pareek Ashwani, Pareek (2020) Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum 172(2):1352–1362. https://doi.org/10.1111/ppl.13270

    Article  CAS  PubMed  Google Scholar 

  • Steiner B, Michel S, Maccaferri M, Lemmens M, Tuberosa R, Buerstmayr H (2019) Exploring and exploiting the genetic variation of Fusarium head blight resistance for genomic-assisted breeding in the elite durum wheat gene pool. Theor Appl Genet 132:969–988

    CAS  PubMed  Google Scholar 

  • Stracke C, Meyer BH, Hagemann A, Jo E, Lee A, Albers S-V, Cha J, Bräsen C, Siebers B (2020) Salt stress response of Sulfolobus acidocaldarius involves complex trehalose metabolism utilizing a novel trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway. Appl Environ Microbiol 86:e01565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F (2020) MaCDSP32 from mulberry enhances resilience post-drought by regulating antioxidant activity and the osmotic content in transgenic tobacco. Front Plant Sci 11:419

    PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Viveros MFÁ, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290

    Google Scholar 

  • Wang J, Zeng Q, Zhu J, Liu G, Tang H (2013) Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agr Ecosyst Environ 165:39–49

    CAS  Google Scholar 

  • Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D (2018) Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Sci 274:410–419

    CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y-B, Yang S-L, Dao J-M, Deng J, Shahzad AN, Fan X, Li R-D, Quan Y-J, Bukhari SAH, Zeng Z-H (2020) Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS One 15:e0235845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhai N, Ma X, Zhou H, Cui Y, Wang C, Xu G (2021) Overexpression of OsRLCK241 confers enhanced salt and drought tolerance in transgenic rice (Oryza sativa L). Gene 768:145278

    CAS  PubMed  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by Department of Biotechnology (DBT), New Delhi under the grant number BT/PR4865/PBD/16/972/2012.

Author information

Authors and Affiliations

Authors

Contributions

RJ and TK have conceived the study and supervised the experimental work, MKR have reviewed the work performed by CK, CK have performed the cloning part. VR, UMW and ZAW have performed the experiments and drafted the manuscript. NJ have assisted while performing the experimental work and drafting the paper.

Corresponding author

Correspondence to Riffat John.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by M.Nasir Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, V., Wani, U.M., Wani, Z.A. et al. Pyramiding ascorbate–glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. Plant Cell Rep 41, 619–637 (2022). https://doi.org/10.1007/s00299-021-02764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02764-8

Keywords

Navigation