Skip to main content
Log in

A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MiWRKY53 is expressed in response to various stresses and hormones. Although it is localized in the nucleus, it shows no transcriptional activation. Role of SA-mediated plant defence response is demonstrated.

Abstract

WRKY transcription factors are one the largest gene families in plants involved in almost every process in plants including development, physiological processes, and stress response. Salicylic acid (SA) is key regulator of biotic stress against various pathogens in plants acting via its multiple mechanisms to induce defence response. Herein, we have identified and functionally validated WRKY53 from mulberry (Morus indica var. K2). MiWRKY53 expressed differentially in response to different stress and hormonal treatments. MiWRKY53 belongs to group III of WKRY gene family, localized in nucleus, and lacks transcriptional activation activity in yeast. Hormone responsive behaviour of MiWRKY53 Arabidopsis overexpression (OE) transgenics preferentially was noted in root growth assay in response to Salicylic acid (SA). Arabidopsis overexpression plants also displayed alteration in leaf phenotype having wider leaves than the wild-type plants. PR-1 transcripts were higher in MiWRKY53 Arabidopsis OE plants and they displayed resistance towards biotrophic pathogen Pseudomonas syringae PstDC3000. MiWRKY53 Mulberry OE transgenics also depicted SA-responsive behaviour. Several hormones and stress-related cis-acting elements were also identified in the 1.2-Kb upstream regulatory region (URR) of MiWRKY53. Functional characterization of full-length promoter region revealed that it is induced by SA and further analysis of deletion constructs helped in the identification of minimal promoter responsible for its inducibility by SA. Altogether, the findings from this study point towards the SA preferential behaviour of MiWRKY53 and its function as regulator of plant defence response through SA-mediated mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. ScientificWorldJournal 2015:807560

    Article  PubMed  PubMed Central  Google Scholar 

  • Baranwal V, Negi N, Khurana P (2016) Genome-wide identification and structural, functional and evolutionary analysis of WRKY components of mulberry. Sci Rep 6:30794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep 21:669–675

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96

    CAS  PubMed  Google Scholar 

  • Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, Qiu A, Lai Y, Mou S, Guan D, Huang R, He S (2015) CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J Exp Bot 66:3163–3174

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10:e0143022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chujo T, Kato T, Yamada K, Takai R, Akimoto-Tomiyama C, Minami E, Nagamura Y, Shibuya N, Yasuda M, Nakashita H, Umemura K, Okada A, Okada K, Nojiri H, Yamane H (2008) Characterization of an elicitor-induced rice WRKY gene, OsWRKY71. Biosci Biotechnol Biochem 72:240–245

    Article  CAS  PubMed  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dabi M, Agarwal P, Agarwal PK (2020) Overexpression of JcWRKY2 confers increased resistance towards Macrophomina phaseolina in transgenic tobacco. 3 Biotech 10(11):1–10

    Article  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Wang W, Ruan C, Deng L, Yao S, Zeng K (2020) Involvement of CsWRKY70 in salicylic acid-induced citrus fruit resistance against Penicillium digitatum. Horticulture Research 7(1):1–12

    Article  CAS  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015) Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 841:56–69

    Article  CAS  Google Scholar 

  • Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S (2014) Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics 289:1103–1121

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K (2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep 34:831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Yao H, Qiu Z, Ma H, Zeng B (2018) Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment. Gene 678:38–48

    Article  CAS  PubMed  Google Scholar 

  • Fan F, Wang Q, Li H, Ding G, Wen X (2020) Transcriptome-wide identification and expression profiles of masson pine WRKY transcription factors in response to low phosphorus stress. Plant Mol Biol Rep. https://doi.org/10.1007/s11105-020-01222-1

    Article  Google Scholar 

  • Gu L, Dou L, Guo Y, Wang H, Li L, Wang C, Ma L, Wei H, Yu S (2019) The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 19:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillaumie S, Mzid R, Mechin V, Leon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185:288–297

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li MY, Wu P, Xu ZS, Que F, Wang F, Xiong AS (2016) Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 17:788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Robert AD, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo j 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Guo L, Liu R, Jiao B, Zhao X, Ling Z, Luo K (2016) Overexpression of poplar PtrWRKY89 in transgenic Arabidopsis leads to a reduction of disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. PLoS ONE 11(3):e0149137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 16:295–305

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 20:1085–1086

    Article  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Qi X, Zeng Q, Xiang Z, He N (2014) MorusDB: a resource for mulberry genomics and genome biology. Database (oxford) 2014:bau054

    Article  CAS  Google Scholar 

  • Li W, Pang S, Lu Z, Jin B (2020) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants (basel) 9:1515

    Article  CAS  Google Scholar 

  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q (2015) Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. PLoS ONE 10:e0128009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222-226

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38:433–449

    Article  CAS  PubMed  Google Scholar 

  • Petitot AS, Barsalobres-Cavallari C, Ramiro D, Albuquerque Freire E, Etienne H, Fernandez D (2013) Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Rep 32:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF (2016) A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Rep 35:1875–1890

    Article  CAS  PubMed  Google Scholar 

  • Ren XJ, Huang WD, Li WZ, Yu DQ (2010) Tobacco transcription factor WRKY4 is a modulator of leaf development and disease resistance. Biol Plant 54:684–690

    Article  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  CAS  Google Scholar 

  • Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29:691–702

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE 8:e65120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Alessandro V, Gang W, Ying-Hai L, Giovanni BT, Sara Z, Erika C, Mario P, Zong-Ming MC (2014) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1:1–16

    Article  CAS  Google Scholar 

  • Wang Q, Yang Y, Yang Y (2016) Molecular cloning, sequence analyses, and functional identification the of WRKY53 gene in Stipa purpurea. Plant Science Journal 34:879–887

    Google Scholar 

  • Wang D, Jiang C, Liu W, Wang Y (2020) The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. J Exp Bot 71:3211–3226

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Jia H, Wang F, Wang C, Liu S, Guo X (2015) Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Front Physiol 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhou Z, Fu M, Han M, Liu Z, Zhu C, Wang L, Zheng J, Liao Y, Zhang W, Ye J (2020) Transcriptome-wide identification of WRKY family genes and their expression profiling toward salicylic acid in Camellia japonica. Plant Signal Behav 16(1):1844508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JL, Wang YL, Yao DQ, Zhu WY, Chen L, He HL, Pan JS, Cai R (2015) Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus. Mol Genet Genomics 290:2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Jeong RD, Venugopal SC, Lapchyk L, Navarre D, Kachroo A, Kachroo P (2011) SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog 7:e1002318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NN acknowledges the Department of Science and Technology, Government of India for the INSPIRE fellowship, and PK is thankful to Department of Biotechnology, Government of India, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Contributions

NN and PK planned experiments. NN performed experiments. NN and PK analyzed data and PK reviewed the manuscript.

Corresponding author

Correspondence to Paramjit Khurana.

Additional information

Communicated by Amit Dhingra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

299_2021_2710_MOESM1_ESM.pdf

Confirmation of MiWRKY53 clone (1053 bp) by restriction digestion. b CDS sequence and protein sequence of MiWRKY53 (PDF 170 KB)

a

Pictorial representation of vector map of overexpression pMDC32::MiWRKY53 b PCR confirmation of Arabidopsis OE T4 lines using gene-specific primers c and hptII (hygromycin) primers. d Overexpression of MiWRKY53 as checked by real-time PCR using GSP (PDF 193 KB)

a

PCR amplification of MiWRKY53 promoter and its deletion constructs. b Arabidopsis transgenic confirmation of MiWRKY53 full length promoter and its deletion constructs. Arabidopsis T1 lines PCR confirmation with GSP. Arabidopsis T1 lines PCR confirmation with gene-specific primers and Kanamycin-specific PCR (PDF 389 KB)

299_2021_2710_MOESM4_ESM.pdf

PCR confirmation of M. indica var. K2 pBI121:MiWRKY53 transformants using a nptII, b gene-specific, c Relative transcript abundance in Morus indica cv. K2 overexpression lines harbouring MiWRKY53 (PDF 268 KB)

List of primers (PDF 159 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, N., Khurana, P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. Plant Cell Rep 40, 2151–2171 (2021). https://doi.org/10.1007/s00299-021-02710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02710-8

Keywords

Navigation