Skip to main content
Log in

Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Salicylic acid and iron-oxide nanoparticles alleviated salt toxicity and improved plant growth by stimulating the activities of H+-ATPase and H+-PPase and preventing nutrient imbalance.

Abstract

Two factorial experiments were undertaken in a greenhouse during 2018 and 2019, to evaluate the impacts of SA (1 mM) and nano-Fe2O3 (3 mM) sprays at 7 leaves and flowering stages on vacuolar H+-pumps, growth and essential oil of salt-subjected (0, 4, 8 and 12 dS m−1 NaCl) ajowan plants. Measurements of plant traits were started at about 12 days after the last foliar spray and continued up to maturity. The H+-ATPase and H+-PPase activities and root ATP content were enhanced under low salinity, but higher salinities reduced these parameters. Rising salinity enhanced Na uptake and translocation, endogenous SA and DPPH activity, while reduced K+/Na+ ratio and nutrients uptake, leading to a reduction in plant biomass. Treatment with SA, nano-Fe2O3 and their combination improved H+-pumps activities and ATP content in roots and leaves. The SA-related treatments caused the highest activities of H+-pumps in roots, but Fe-related treatments resulted in the highest activities of these pumps in leaves. Increasing H+-pumps activities reduced sodium uptake and translocation and enhanced nutrients uptake. Foliar treatments, especially SA + nano-Fe2O3 augmented endogenous SA, DPPH activity, and plant growth in salt-stressed plants. Essential oil contents of vegetative and inflorescence organs under severe salinity and seeds under moderate and severe salinities were enhanced. Maximum essential oil was obtained from seeds of SA + nano-Fe2O3-treated plants, which was strongly correlated with endogenous SA and DPPH. Nevertheless, the SA + nano-Fe2O3 was the best treatment for diminishing salt toxicity and improving ajowan plant growth and essential oil production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020) Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron-oxide nanoparticles under salt stress. Environ Sci Pollut Res 27:36939–36953. https://doi.org/10.1007/s11356-020-09453-1

    Article  CAS  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Ching CH (2010) Salicylic acid mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    CAS  Google Scholar 

  • Charles O, Joly R, Simon JE (1994) Effect of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 29:2837–2840

    Google Scholar 

  • Cortés-Arroyo AR, Domínguez-Ramírez AM, Gómez-Hernández M, López JRM, López-Muñoz FJ (2011) Antispasmodic and bronchodilator activities of Taxodium mucronatum Ten leaf extract. Afr J Biotechnol 10:54–64

    Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    CAS  PubMed  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    CAS  PubMed  Google Scholar 

  • Dwivedi SN, Mishra RP, Alava S (2012) Phytochemistry: pharmacological studies and traditional benefits of Trachyspermum ammi (Linn.) Sprague. Int J Pharm Life Sci 3:1705–1709

    Google Scholar 

  • Dwivedi AD, Yoon H, Singh JP, Chae KH, Rho SC, Hwang DS, Chang YS (2018) Distribution, and transformation of zerovalent iron nanoparticles in the edible plant Cucumis sativus. Environ Sci Technol 52:10057–10066

    CAS  PubMed  Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AME, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol 8:716. https://doi.org/10.3389/fphys.2017.00716

    Article  PubMed  PubMed Central  Google Scholar 

  • Esan AM, Masisi K, Dada FA, Olaiya CO (2017) Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Sci Hortic 216:278–283

    CAS  Google Scholar 

  • Fan JW, Du YL, Wang BR, Turner NC, Wang T, Abbott LK, Stefanova K, Siddique KHM, Li FM (2016) Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration of young and old stands of alfalfa in response to nitrogen and phosphorus fertilization in a semi-arid environment. Field Crop Res 198:247–257

    Google Scholar 

  • Farhadi N, Ghassemi-Golezani K (2020) Physiological changes of Mentha pulegium in response to exogenous salicylic acid under salinity. Sci Hortic 267:109325. https://doi.org/10.1016/j.scienta.2020.109325

    Article  CAS  Google Scholar 

  • Fathi A, ZahediM TS, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    CAS  Google Scholar 

  • Fuglsang AT, Paez-Valencia J, Gaxiola RA (2010) Plant proton pumps: regulatory circuits involving H+-ATPase and H+-PPase. In: Geisler M, Venema K (eds) Transporters and pumps in plant signaling. Springer, Berlin, pp 39–64

    Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S (2018) Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol Environ Saf 166:18–25

    CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Hassanzadeh N, Shakiba MR, Esmaeilpour B (2020) Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatal Agric Biotechnol 26:101636. https://doi.org/10.1016/j.bcab.2020.101636

    Article  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91

    Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Netherlands, pp 1–14

    Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H, Rinklebe J (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164

    CAS  PubMed  Google Scholar 

  • Idrees M, Khan MMA, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Interact 5:293–303

    CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    CAS  PubMed  Google Scholar 

  • Keisham M, Mukherjee S, Bhatla SC (2018) Mechanisms of sodium transport in plants-progresses and challenges. Int J Mol Sci 19:647. https://doi.org/10.3390/ijms19030647

    Article  CAS  PubMed Central  Google Scholar 

  • Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119

    CAS  PubMed  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458. https://doi.org/10.1007/BF00016484

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Dong Y, Xu L, Liu S, Bai X (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:9. https://doi.org/10.1186/1999-3110-55-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson CM, Olssonl T (1979) Firefly assay of adenine nucleotides from algae: comparison of extraction methods. Plant Cell Physiol 20:145–155

    CAS  Google Scholar 

  • Li X, Guo C, Gu J, Duan W, Zhao M, Ma C, Du X, Lu W, Xiao K (2014) Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity and drought. J Exp Bot 65:683–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang A, Zhang WH (2016a) Efficient acquisition of iron confers greater tolerance to saline alkaline stress in rice (Oryza sativa L.). J Exp Bot 67:6431–6444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhen Z, Guo K, Harvey P, Li J, Yang H (2016b) MAPK-mediated enhanced expression of vacuolar H+-ATPase confers the improved adaption to NaCl stress in a halotolerate peppermint (Mentha piperita L.). Protoplasma 253:553–569

    CAS  PubMed  Google Scholar 

  • Li J, Wan F, Guo W, Huang J, Dai Z, Yi L, Wang Y (2020) Influence of α- and γ-Fe2O3 nanoparticles on watermelon (Citrullus lanatus) physiology and fruit quality. Water Air Soil Pollut 231:143. https://doi.org/10.1007/s11270-020-04511-3

    Article  CAS  Google Scholar 

  • Lv S, Jiang P, Tai F, Wang D, Feng J, Fan P, Bao H, Li Y (2017) The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea. Planta 246:1177–1187. https://doi.org/10.1007/s00425-017-2762-0

    Article  CAS  PubMed  Google Scholar 

  • McCarty RE (2005) ATP synthase of chloroplast thylakoid membranes: a more in depth characterization of its ATPase activity. J Bioenerg Biomembr 37:289–297

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Ohnishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. Anal Biochem 69:261–267

    CAS  PubMed  Google Scholar 

  • Otoch MLO, Sobreira ACM, De Aragão MEF, Orellano EG, Lima MGS, De Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551

    CAS  Google Scholar 

  • Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Zhang H (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57:1069–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Paz-Ferreiro J, Beesley L (2015) Cadmium, lead and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res 22:17606–17614

    CAS  Google Scholar 

  • Queirós F, Fontes N, Silva P, Almeida D, Maeshima M, Gerós H, Fidalgo F (2009) Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. J Exp Bot 60:1363–1374

    PubMed  Google Scholar 

  • Sarmoum R, Haid S, Biche M, Djazouli Z, Zebib B, Merah O (2019) Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L.). Agronomy 9:214. https://doi.org/10.3390/agronomy9050214

    Article  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    CAS  Google Scholar 

  • Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O (2012) Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 69:529–541

    CAS  PubMed  Google Scholar 

  • Segami S, Asaoka M, Kinoshita S, Fukuda M, Nakanishi Y, Maeshima M (2018) Biochemical, structural, and physiological characteristics of vacuolar H+-pyrophosphatase. Plant Cell Physiol 59:1300–1308

    CAS  PubMed  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    CAS  PubMed  Google Scholar 

  • Silva P, Geros H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh I, Singh VP (2000) Antifungal properties of aqueous and organic solution extracts of seed plants against Aspergillus flavus and A niger. Phytomorphology 50:151–157

    Google Scholar 

  • Su N, Wu Q, Chen J, Shabala L, Mithöfer A, Wang H, Qu M, Yu M, Cui J, Shabala S (2019) GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. J Exp Bot 70:6349–6361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder JI, Ma JF, Horie T (2016) OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol 16:22. https://doi.org/10.1186/s12870-016-0709-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabian S, Farhangi-Abriz S, Rathjen J (2018) Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiol Biochem 129:141–149

    CAS  PubMed  Google Scholar 

  • Wang S, Xu L, Li G, Chen P, Xia K, Zhou X (2002) An ELISA for the determination of salicylic acid in plants using a monoclonal antibody. Plant Sci 162:529–535

    CAS  Google Scholar 

  • Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561

    CAS  Google Scholar 

  • Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol 57:171–185

    CAS  PubMed  Google Scholar 

  • Wu H, Shabala L, Shabala S, Giraldo JP (2018) Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Sci-Nano 5:1567–1583

    CAS  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410. https://doi.org/10.3389/fpls.2013.00410

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Kang YG, Chang YS, Kim JH (2019) Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil grown Arabidopsis thaliana. Nanomaterials 9:1543. https://doi.org/10.3390/nano9111543

    Article  CAS  PubMed Central  Google Scholar 

  • Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8:3228. https://doi.org/10.1038/s41598-017-18055-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarshenas MM, Samani SM, Petramfar P, Moein M (2014) Analysis of the essential oil components from different Carum copticum L. samples from Iran. Pharmacogn Res 6:62–66

    Google Scholar 

Download references

Acknowledgements

We appreciate the University of Tabriz and Iran National Science Foundation for the financial support of this work.

Funding

We appreciate the University of Tabriz and Iran National Science Foundation for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

KG-G: Experimental design, supervision and writing. SA: Experimental work, statistical analysis and writing.

Corresponding author

Correspondence to Kazem Ghassemi-Golezani.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Additional information

Communicated by Sheng Ying.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassemi-Golezani, K., Abdoli, S. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep 40, 559–573 (2021). https://doi.org/10.1007/s00299-020-02652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02652-7

Keywords

Navigation