Skip to main content
Log in

The role of methane in plant physiology: a review

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Methane (CH4), one of the most important greenhouse gases, has conventionally been considered as a physiologic inert gas. However, this perspective has been challenged by the observation that CH4 has diverse biological functions in animals, such as anti-inflammatory, antioxidant, and anti-apoptosis. Meanwhile, it has now been identified as a possible candidate of gaseous signaling molecule in plants, although its biosynthetic and metabolic pathways as well as the mechanism(s) of CH4 signaling have not fully understood yet. This paper aims to review the available evidence for the biological roles of CH4 in regulating plant physiology. Although currently available reports do not fully support the notion of CH4 as a gasotransmitter, they do show that CH4 might be produced by an aerobic, non-microbial pathway from plants, and plays important roles in enhancing plant tolerance against abiotic stresses, such as salinity, drought, heavy metal exposure, and promoting root development, as well as delaying senescence and browning. Further results showed that CH4 could interact with reactive oxygen species (ROS), other gaseous signaling molecules [e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S)], and glutathione (GSH). These reports thus support the idea that plant-produced CH4 might be a component of a survival strategy of plants. Finally, the possibility of CH4 application in agriculture is preliminarily discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Integrated from Liu et al. (2015); Liu and Whitman (2008)

Fig. 2

Similar content being viewed by others

References

  • Abdulmajeed AM, Derby SR, Strickland SK, Qaderi MM (2017) Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system. J Photochem Photobiol B 166:193–201

    CAS  PubMed  Google Scholar 

  • Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80:286–292

    CAS  PubMed  Google Scholar 

  • Althoff F, Benzing K, Comba P, McRoberts C, Boyd DR, Greiner S, Keppler F (2014) Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat Commun 5:4205

    CAS  PubMed  Google Scholar 

  • Armstrong J, Jones RE, Armstrong W (2006) Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytol 172:719–731

    CAS  PubMed  Google Scholar 

  • Aroca Á, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine post-translational modification in plant systems. Plant Physiol 168:334–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bange HW, Uher G (2005) Photochemical production of methane in natural waters: implications for its present and past oceanic source. Chemosphere 58:177–183

    CAS  PubMed  Google Scholar 

  • Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR, Pihlatie M, Poulter B, Rivas-Ubach A, Schadt CW, Terazawa K, Warner DL, Zhang Z, Vargas R (2019) Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol 222:18–28

    CAS  PubMed  Google Scholar 

  • Boros M, Ghyczy M, Érces D, Varga G, Tőkés T, Kupai K, Torday C, Kaszaki J (2012) The anti-inflammatory effects of methane. Crit Care Med 40:1269–1278

    CAS  PubMed  Google Scholar 

  • Boros M, Tuboly E, Mészáros A, Amann A (2015) The role of methane in mammalian physiology—is it a gasotransmitter? J Breath Res 9:14001

    Google Scholar 

  • Bruggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182:912–918

    PubMed  Google Scholar 

  • Bruhn D, Mikkelsen TN, Obro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11:43–48

    CAS  PubMed  Google Scholar 

  • Bruhn D, Møller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209

    CAS  PubMed  Google Scholar 

  • Bruhn D, Mikkelsen T, Rolsted M, Egsgaard H, Ambus P (2014) Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biol 16:512–516

    CAS  PubMed  Google Scholar 

  • Chen O, Ye Z, Caoc Z, Manaenko A, Ning K, Zhai X, Zhang R, Zhang T, Chen X, Liu W, Sun X (2016) Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radic Biol Med 90:1–11

    CAS  PubMed  Google Scholar 

  • Costello BPJD, Ledochowski M, Ratcliffe NM (2013) The importance of methane breath testing: a review. J Breath Res 7:024001

    Google Scholar 

  • Covey KR, Megonigal JP (2019) Methane production and emissions in trees and forests. New Phytol 222:35–51

    PubMed  Google Scholar 

  • Covey KR, Wood SA, Warren RJI, Lee X, Bradford MA (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705

    Google Scholar 

  • Cui W, Qi F, Zhang Y, Cao H, Zhang J, Wang R, Shen W (2015) Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways. Plant Cell Rep 34:435–445

    CAS  PubMed  Google Scholar 

  • Cui W, Cao H, Yao P, Pan J, Gu Q, Xu S, Wang R, Ouyang Z, Wang Q, Shen W (2017) Methane enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation and reestablishing redox homeostasis. Biometals 30:719–732

    CAS  PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    CAS  PubMed  Google Scholar 

  • Emmanuel S, Ague JJ (2007) Implications of present-day abiogenic methane fluxes for the early Archean atmosphere. Geophys Res Lett 34:L15810

    Google Scholar 

  • Evans DE (2004) Aerenchyma formation. New Phytol 161:35–49

    Google Scholar 

  • Fiebig J, Woodland AB, D’Alessandro W, Püttmann W (2009) Excess methane in continental hydrothermal emissions is abiogenic. Geology 37:495–498

    CAS  Google Scholar 

  • Foy CD, Chaney R, White CM (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz C, Pancotto VA, Elzenga JTM, Visser EJW, Grootjans AP, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytol 190:398–408

    PubMed  Google Scholar 

  • Garnet KN, Megonigal JP, Litchfield C, Taylor GE (2005) Physiological control of leaf methane emission from wetland plants. Aquat Bot 81:141–155

    CAS  Google Scholar 

  • Ghyczy M, Torday C, Kaszaki J, Szabo A, Czobel M, Boros M (2008) Hypoxia-induced generation of methane in mitochondria and eukaryotic cells—an alternative approach to methanogenesis. Cell Physiol Biochem 21:251–258

    CAS  PubMed  Google Scholar 

  • Godina A, McLaughlin JW, Webster KL, Packalen M, Basiliko N (2012) Methane and methanogen community dynamics across a boreal peat land nutrient gradient. Soil Biol Biochem 48:96–105

    Google Scholar 

  • Gu Q, Chen Z, Cui W, Zhang Y, Hu H, Yu X, Wang Q, Shen W (2018) Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. Ecotoxicol Environ Saf 147:861–871

    CAS  PubMed  Google Scholar 

  • Han B, Duan X, Wang Y, Zhu K, Zhang J, Wang R, Hu H, Qi F, Pan J, Yan Y, Shen W (2017) Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 7:46185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hietala A, Dorsch P, Kvaalen H, Solheim H (2015) Carbon dioxide and methane formation in norway spruce stems infected by white-rot fungi. Forests 6:3304–3325

    Google Scholar 

  • Hsu YY, Chao Y, Kao CH (2013) Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase. J Plant Physiol 170:1075–1081

    CAS  PubMed  Google Scholar 

  • Hu H, Liu D, Li P (2018) Methane delays the senescence and browning in daylily buds by re-established redox homeostasis. J Sci Food Agric 98:1977–1987

    CAS  PubMed  Google Scholar 

  • Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 238:201–208

    Google Scholar 

  • Jia Y, Li Z, Feng Y, Cui R, Dong Y, Zhang X, Xiang X, Qu K, Liu C, Zhang J (2018) Methane-rich saline ameliorates sepsis-induced acute kidney injury through anti-inflammation, antioxidative, and antiapoptosis effects by regulating endoplasmic reticulum stress. Oxid Med Cell Longev. https://doi.org/10.1155/2018/4756846

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, He J, Cheng P, Xiang Z, Zhou H, Wang R, Shen W (2019) Methane control of adventitious rooting requires γ-glutamyl cysteine synthetase-mediated glutathione homeostasis. Plant Cell Physiol 60:802–815

    CAS  PubMed  Google Scholar 

  • Jugold A, Althoff F, Hurkuck M, Greule M, Lenhart K, Lelieveld J, Keppler F (2012) Non-microbial methane formation in oxic soils. Biogeosciences 9:5291–9301

    CAS  Google Scholar 

  • Keppler F, Hamilton J, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    CAS  PubMed  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Rockmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814

    CAS  PubMed  Google Scholar 

  • Kou N, Xiang Z, Cui W, Li L, Shen W (2018) Hydrogen sulfide acts downstream of methane to induce cucumber adventitious root development. J Plant Physiol 228:113–120

    CAS  PubMed  Google Scholar 

  • Kurniasih B, Greenway H, Colmer TD (2013) Tolerance of submerged germinating rice to 50–200 mM NaCl in aerated solution. Physiol Plantarum 149:222–233

    CAS  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, Neu TR, Schuettmann I, Greule M, Kammann C, Schnell S, Mueller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046

    PubMed  Google Scholar 

  • Lenhart K, Althoff F, Greule M, Keppler F (2015) Technical note: methionine, a precursor of methane in living plants. Biogeosciences 12:1907–1914

    CAS  Google Scholar 

  • Li Z, Jia Y, Feng Y, Cui R, Miao R, Zhang X, Qu K, Liu C, Zhang J (2019) Methane alleviates sepsis-induced injury by inhibiting pyroptosis and apoptosis in vivo and in vitro experiments. Aging 11:1226–1239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    CAS  PubMed  Google Scholar 

  • Liu W, Wang D, Tao H, Sun X (2012) Is methane a new therapeutic gas? Med Gas Res 2:25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen H, Zhu Q, Shen Y, Wang X, Wang M, Peng C (2015) A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 115:26–35

    CAS  Google Scholar 

  • Mäkipää R, Leppänen SM, Munoz SS, Smolander A, Tiirola M, Tuomivirta T, Fritze H (2018) Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs. Soil Biol Biochem 120:230–232

    Google Scholar 

  • Martel AB, Qaderi MM (2017) Light quality and quantity regulate aerobic methane emissions from plants. Physiol Plant 159:313–328

    CAS  PubMed  Google Scholar 

  • McLeod A, Fry S, Loake G, Messenger D, Reay D, Smith K, Yun B (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132

    CAS  PubMed  Google Scholar 

  • Mei Y, Zhao Y, Jin X, Wang R, Xu N, Hu J, Huang L, Guan R, Shen W (2019) l-Cysteine desulfhydrase-dependent hydrogen sulfide is required for methane-induced lateral root formation. Plant Mol Biol 99:283–298

    CAS  PubMed  Google Scholar 

  • Meng Y, Jiang Z, Li N, Zhao Z, Cheng T, Yao Y, Wang L, Liu Y, Deng X (2018) Protective effects of methane-rich saline on renal ischemic-reperfusion injury in a mouse model. Med Sci Monit 24:7794–7801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32:1–9

    CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    CAS  PubMed  Google Scholar 

  • Pangala SR, Gowing DJ, Hornibrook ERC, Gauci V (2014) Controls on methane emissions from Alnus glutinosa saplings. New Phytol 201:887–896

    CAS  PubMed  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    PubMed  Google Scholar 

  • Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38:97–105

    CAS  PubMed  Google Scholar 

  • Qi F, Xiang Z, Kou N, Cui W, Xu D, Wang R, Zhu D, Shen W (2017) Nitric oxide is involved in methane-induced adventitious root formation in cucumber. Physiol Plant 159:366–377

    CAS  PubMed  Google Scholar 

  • Raghoebarsing AA, Smolders A, Schmid MC, Rijpstra W, Wolters-Arts M, Derksen J, Jetten M, Schouten S, Damste J, Lamers L, Roelofs J, den Camp H, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    CAS  PubMed  Google Scholar 

  • Rusch H, Rennenberg H (1998) Black alder [Alnus glutinosa (L.) Gaertn.] trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201:1–7

    CAS  Google Scholar 

  • Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W (2017) Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 30:97–111

    CAS  PubMed  Google Scholar 

  • Sorrell BK, Downes MT, Stanger CL (2002) Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquat Bot 72:107–119

    Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82

    Google Scholar 

  • Sundqvist E, Crill P, Molder M, Vestin P, Lindroth A (2012) Atmospheric methane removal by boreal plants. Geophys Res Lett 39:L21806

    Google Scholar 

  • Tuboly E, Szabo A, Garab D, Bartha G, Janovszky A, Eros G, Szabo A, Mohacsi A, Szabo G, Kaszaki J, Ghyczy M, Boros M (2013) Methane biogenesis during sodium azide-induced chemical hypoxia in rats. Am J Physiol Cell Physiol 304:C207–C214

    CAS  PubMed  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    CAS  Google Scholar 

  • Uzilday B, Turkan I, Ozgur R, Sekmen AH (2014) Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. J Plant Physiol 171:65–75

    CAS  PubMed  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Rockmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947

    CAS  Google Scholar 

  • Vigano I, Rockmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature of methane emitted from plant material under UV irradiation. Atmos Environ 43:5637–5646

    CAS  Google Scholar 

  • Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39:227–232

    CAS  PubMed  Google Scholar 

  • Wang Z, Gulledge J, Zheng J, Liu W, Li L, Han X (2009) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences 6:615–621

    CAS  Google Scholar 

  • Wang Z, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45:4915–4921

    CAS  Google Scholar 

  • Wang B, Hou L, Liu W, Wang Z (2013a) Non-microbial methane emissions from soils. Atmos Environ 80:290–298

    CAS  Google Scholar 

  • Wang Z, Chang SX, Chen H, Han X (2013b) Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth Sci Rev 127:193–202

    CAS  Google Scholar 

  • Wang Z, Gu Q, Deng F, Huang J, Megonigal JP, Yu Q, Lu X, Li L, Chang S, Zhang Y, Feng J, Han X (2016) Methane emissions from the trunks of living trees on upland soils. New Phytol 211:429–439

    CAS  PubMed  Google Scholar 

  • Wang L, Yao Y, He R, Meng Y, Li N, Zhang D, Xu J, Chen O, Cui J, Bian J, Zhang Y, Chen G, Deng X (2017) Methane ameliorates spinal cord ischemia-reperfusion injury in rats: antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic Biol Med 103:69–86

    CAS  PubMed  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    CAS  Google Scholar 

  • Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34:457–464

    CAS  PubMed  Google Scholar 

  • Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou J, Zuo J (2015) S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167:1604–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Chen O, Zhang R, Nakao A, Fan D, Zhang T, Gu Z, Tao H, Sun X (2015) Methane attenuates hepatic ischemia/reperfusion injury in rats through antiapoptotic, anti-inflammatory, and antioxidative actions. Shock 44:181–187

    CAS  PubMed  Google Scholar 

  • Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW (2019) Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytol 222:115–121

    CAS  PubMed  Google Scholar 

  • Yun B, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang J, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:161–264

    Google Scholar 

  • Zhang Y, Su J, Cheng D, Wang R, Mei Y, Hu H, Shen W, Zhang Y (2018) Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean. BMC Plant Biol 18:207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang Y, Liu F, Wang R, Huang L, Shen W (2019) Hydrogen peroxide is involved in methane-induced tomato lateral root formation. Plant Cell Rep 38:377–389

    CAS  PubMed  Google Scholar 

  • Zhou S, Zhou Y, Ji F, Li H, Lv H, Zhang Y, Xu H (2018) Analgesic effect of methane rich saline in a rat model of chronic inflammatory pain. Neurochem Res 43:869–877

    CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu K, Cui W, Dai C, Wu M, Zhang J, Zhang Y, Xie Y, Shen W (2016) Methane-rich water alleviates NaCl toxicity during alfalfa seed germination. Environ Exp Bot 129:37–47

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 31572116 and 31771696) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20181317). We would like to thank Dr. Evan Evans (University of Tasmania; tassiebeerdr@gmail.com) for the English editing of this paper.

Author information

Authors and Affiliations

Authors

Contributions

LL, SW, and WS wrote and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Wenbiao Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wei, S. & Shen, W. The role of methane in plant physiology: a review. Plant Cell Rep 39, 171–179 (2020). https://doi.org/10.1007/s00299-019-02478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02478-y

Keywords

Navigation