Skip to main content
Log in

Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

OsHSP50.2, an HSP90 family gene up-regulated by heat and osmotic stress treatments, positively regulates drought stress tolerance probably by modulating ROS homeostasis and osmotic adjustment in rice.

Abstract

Heat-shock proteins (HSPs) serve as molecular chaperones for a variety of client proteins in abiotic stress response and play pivotal roles in protecting plants against stress, but the molecular mechanism remains largely unknown. Here, we report an HSP90 family gene, OsHSP50.2, which acts as a positive regulator in drought stress tolerance in rice (Oryza sativa). OsHSP50.2 was ubiquitously expressed and its transcript level was up-regulated by heat and osmotic stress treatments. Overexpression of OsHSP50.2 in rice reduced water loss and enhanced the transgenic plant tolerance to drought and osmotic stresses. The OsHSP50.2-overexpressing plants exhibited significantly lower levels of electrolyte leakage and malondialdehyde (MDA) and less decrease of chlorophyll than wild-type plants under drought stress. Moreover, the OsHSP50.2-overexpressing plants had significantly higher SOD activity under drought stress compared with the wild type. These results imply that OsHSP50.2 positively regulates drought stress tolerance in rice, probably through the modulation of reactive oxygen species (ROS) homeostasis. Additionally, the OsHSP50.2-overexpressing plants accumulated significantly higher content of proline than the wild type under drought stress, which contributes to the improved protection ability from drought stress damage via osmotic adjustment. Our findings reveal that OsHSP50.2 plays a crucial role in drought stress response, and it may possess high potential usefulness in drought tolerance improvement of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HSF:

Heat-shock factor

HSP:

Heat-shock protein

MDA:

Malondialdehyde

MS:

Murashige and Skoog

OE:

Overexpression

PEG:

Polyethylene glycol

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

ROS:

Reactive oxygen species

RT:

Reverse transcription

SOD:

Superoxide dismutase

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  Google Scholar 

  • Breiman A (2014) Plant Hsp90 and its co-chaperones. Curr Protein Pept Sci 15:232–244

    Article  CAS  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  Google Scholar 

  • Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biochim Biophys Acta 1823:689–697

    Article  CAS  Google Scholar 

  • Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608

    Article  CAS  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lv Y, Guo Z, Li X, Ye H, Xiong L (2016) New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ 39:556–570

    Article  CAS  Google Scholar 

  • Lv Y, Yang M, Hu D, Yang Z, Ma S, Li X, Xiong L (2017) The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression. Plant Physiol 173:1475–1491

    Article  CAS  Google Scholar 

  • Meiri D, Breiman A (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 59:387–399

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  Google Scholar 

  • Moshe A, Gorovits R, Liu Y, Czosnek H (2016) Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. Mol Plant Pathol 17:247–260

    Article  CAS  Google Scholar 

  • O’Meara TR, Robbins N, Cowen LE (2017) The Hsp90 chaperone network modulates Candida virulence traits. Trends Microbiol 25:809–819

    Article  Google Scholar 

  • Park HS, Jeong WJ, Kim E, Jung Y, Lim JM, Hwang MS, Park EJ, Ha DS, Choi DW (2012) Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar Biotechnol (NY) 14:332–342

    Article  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  Google Scholar 

  • Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151:241–252

    Article  CAS  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  CAS  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  Google Scholar 

  • Song H, Zhao R, Fan P, Wang X, Chen X, Li Y (2009) Overexpression of AtHsp90.2. AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta 229:955–964

    Article  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  Google Scholar 

  • Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N (2017) Function of heterotrimeric G-protein gamma subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta 245:367–383

    Article  CAS  Google Scholar 

  • Taheri P, Kakooee T (2017) Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen. J Plant Physiol 216:152–163

    Article  CAS  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    Article  CAS  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469

    Article  CAS  Google Scholar 

  • Watanabe E, Mano S, Hara-Nishimura I, Nishimura M, Yamada K (2017) HSP90 stabilizes auxin receptor TIR1 and ensures plasticity of auxin responses. Plant Signal Behav 12:e1311439

    Article  Google Scholar 

  • Weng JK, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893

    Article  CAS  Google Scholar 

  • Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  CAS  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  Google Scholar 

  • Xiang J, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X (2013) Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep 32:1795–1806

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    Article  CAS  Google Scholar 

  • Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H (2013) Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One 8:e69810

    Article  CAS  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • You J, Zong W, Hu H, Li X, Xiao J, Xiong L (2014) A stress-responsive NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant Physiol 166:2100–2114

    Article  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  Google Scholar 

  • Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J (2015a) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genom 16:181

    Article  Google Scholar 

  • Zhang XC, Millet YA, Cheng Z, Bush J, Ausubel FM (2015b) Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat Plants 1:15049

    Article  CAS  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

    Article  CAS  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31401943 and 31671628), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 14C0453) and Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Leena Tripathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 KB)

Supplementary material 2 (DOC 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Chen, X., Hu, W. et al. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep 37, 1585–1595 (2018). https://doi.org/10.1007/s00299-018-2331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2331-4

Keywords

Navigation