Skip to main content
Log in

Arabidopsis: the original plant chassis organism

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana (thale cress) has a past, current, and future role in the era of synthetic biology. Arabidopsis is one of the most well-studied plants with a wealth of genomics, genetics, and biochemical resources available for the metabolic engineer and synthetic biologist. Here we discuss the tools and resources that enable the identification of target genes and pathways in Arabidopsis and heterologous expression in this model plant. While there are numerous examples of engineering Arabidopsis for decreased lignin, increased seed oil, increased vitamins, and environmental remediation, this plant has provided biochemical tools for introducing Arabidopsis genes, pathways, and/or regulatory elements into other plants and microorganisms. Arabidopsis is not a vegetative or oilseed crop, but it is as an excellent model chassis for proof-of-concept metabolic engineering and synthetic biology experiments in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Ghany SE, Day I, Heuberger AL, Broeckling CD, Reddy ASN (2013) Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Metab Eng 20:109–120

    Article  CAS  PubMed  Google Scholar 

  • Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, Depamphilis CW, Schultz EB, Yuceer C (2012) Plant-based FRET biosensor discriminates environmental zinc levels. Plant Biotechnol J 10:207–216

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336–343

    Article  CAS  PubMed  Google Scholar 

  • Cahoon RE, Lutke WK, Cameron JC, Chen S, Lee SG, Rivard RS, Rea PA, Jez JM (2015) Adaptive engineering of phytochelatin-based heavy metal tolerance. J Biol Chem 290:17230–17321

    Article  Google Scholar 

  • Chu Y, Kwon T, Nam J (2014) Enzymatic and metabolic engineering for efficient production of syringing, sinapyl alcohol 4-O-glucoside, in Arabidopsis thaliana. Phytochemistry 102:55–63

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Stockwell VO, Goyer A (2015) Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering. Plant Cell Physiol 56:2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Engler C, Youles M, Gruetzner R (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • EU Joint Research Centre (2006) Transgenic Arabidopsis thaliana for detection of explosives in the soil. Notification number: B/DK/06/01

  • Ewing R, Poirot O, Claverie JM (1999–2000) Comparative analysis of the Arabidopsis and rice expressed sequence tag (EST) sets. In Silico Biol 1:197–213

  • Farre G, Twyman RM, Christou P, Capell T, Zhu C (2015) Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr Opin Biotechnol 32:54–60

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulator of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ren Z, Lu C (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol 158:1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jez JM, Lee SG, Sherp AM (2016) The next green movement: plant biology for the environment and sustainability. Science 353:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science 349:1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, Cabello JM, Davidson RS, Goldberg AP, Shasha DE, Coruzzi GM, Gutiérrez RA (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Huang SC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, Castanon R, Nery JR, Barragan C, He Y, Chen H, Dubin M, Lee CR, Wang C, Bemm F, Becker C, O’Neil R, O’Malley RC, Quarless DX; 1001 Genomes Consortium, Schork NJ, Weigel D, Nordborg M, Ecker JR (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laibach F (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Bot Centbl Beihefte (I) 22:191–210

    Google Scholar 

  • Laibach F (1943) Arabidopsis thaliana(L.) Heynh. als objekt fur genetische und entwicklungsphysiologische untersuchungen. Bot Archiv 44:439–455

    Google Scholar 

  • Lange I, Poirier BC, Herron BK, Lange BM (2015) Comprehensive assessment of transcriptional regulation facilitates metabolic engineering of isoprenoid accumulation in Arabidopsis. Plant Physiol 169:1595–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonelli S (2007) Growing weed, producing knowledge: an epistemic history of Arabidopsis thaliana. Hist Phil Life Sci 29:193–224

    Google Scholar 

  • Li JF, Aach J, Norville JE, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nature Biotech 31:688–691

    Article  CAS  Google Scholar 

  • Li Q, Song J, Peng S, Wang JP, Guan-Zheng Q, Sederoff RR, Chiang VL (2014) Plant biotechnology for lignocellulosic biofuel production. Plant Biotech J 12:1174–1192

    Article  CAS  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Li J (2017) Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytol 216:699–719

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM (2001) Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci USA 109:339–344

    Article  CAS  PubMed  Google Scholar 

  • Napier JA, Haslam RP, Beaudoin F, Cahoon EB (2014) Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defense compounds to seeds. Nature 488:531–534

    Article  CAS  PubMed  Google Scholar 

  • Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen CE, Andersen JS, Seynnaeve D, Verhoye T, Fulawka R, Denolf P, Halkier BA (2017) Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nature Biotech 35:377–382

    Article  CAS  Google Scholar 

  • O’Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol Biol 1284:323–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen C, Patron NJ, Huang A, Osbourn A (2017) Harnessing plant metabolic diversity. Curr Opin Chem Biol 40:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, Wang B, Wang L, Yao Q (2014) Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 26:100–110

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Zhou XR, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One 7:e49165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner, McCourt P (2015) 50 Years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  PubMed  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    Article  CAS  PubMed  Google Scholar 

  • Robert SS, Singh SP, Zhou XR, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green AG (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O (2013) Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of nS3 LC-PUFAs in transgenic plants. Metab Eng 17:30–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayanova O, Ruiz-Lopez N, Haslam RP, Napier JA (2012) The role of ∆6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants. Plant Biotech J 10:195–206

    Article  CAS  Google Scholar 

  • Shockey J, Mason C, Gilbert M, Cao H, Li X, Cahoon E, Dyer J (2015) Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. Plant Mol Biol 89:113–126

    Article  CAS  PubMed  Google Scholar 

  • Tzin V, Malitsky S, Ben Zvi MM, Bedair M, Sumner L, Aharoni A, Galili G (2012) Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol 194:430–439

    Article  CAS  PubMed  Google Scholar 

  • van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, Tahchy AE, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-Lopez N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotech J 12:231–239

    Article  CAS  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Weber AP, Brautigam A (2013) The role of membrane transport in metabolic engineering of plant primary metabolism. Curr Opin Biotechnol 24:256–262

    Article  CAS  PubMed  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C (2015) Ectopic expression of WRINKLED1affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol 169:1836–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Grotewold E (2015) Metabolic engineering to enhance the value of plants as green factories. Metab Eng 27:83–91

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM (2017) Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. Plant Biotech J 15:1010–1023

    Article  CAS  Google Scholar 

  • Zhang S (2017) Whatever happened to the glowing plant Kickstarter? The Atlantic, April 20. Genomes Consortium (2016) 1135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    Google Scholar 

  • Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24:3135–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (MCB-1614539 to JMJ and DGE-1143954 to CKH).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched and wrote this review.

Corresponding author

Correspondence to Joseph M. Jez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, C.K., Jez, J.M. Arabidopsis: the original plant chassis organism. Plant Cell Rep 37, 1359–1366 (2018). https://doi.org/10.1007/s00299-018-2286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2286-5

Keywords

Navigation