Skip to main content
Log in

Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2).

Abstract

LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, Kay SA, Imaizumi T (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22:606–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adám E, Fejes E, Schäfer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111:427–432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boron AK, Vissenberg K (2014) The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep 33:697–706

    Article  CAS  PubMed  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    Article  CAS  PubMed  Google Scholar 

  • Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71:684–697

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M (2012) Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One 7:e36210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cowling RJ, Harberd NP (2007) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 58:4269–4281

    Article  Google Scholar 

  • de Lucas M, Prat S (2014) PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol 202:1126–1141

    Article  PubMed  Google Scholar 

  • Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74

    Article  CAS  PubMed  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    Article  CAS  PubMed  Google Scholar 

  • Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Sánchez-Villarreal A, Takahashi Y, Loren Ver, van Themaat E, Huettel B, Davis SJ, Coupland G (2015) The GI-CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81:695–706

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H (2012) Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem Biol 7:590–598

    Article  CAS  PubMed  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  PubMed Central  Google Scholar 

  • Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Más P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    Article  CAS  PubMed  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–490

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in plants. Kluwer Academic Publishers, Dordrecht, Boston, London

    Book  Google Scholar 

  • Kiba T, Henriques R, Sakakibara H, Chua N-H (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19:2516–2530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiyosue T, Wada M (2000) LKP1 (LOV Kelch protein1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J 23:807–815

    Article  CAS  PubMed  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli AL (1990) Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiol 92:1191–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    Article  PubMed  Google Scholar 

  • Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:e225

    Article  PubMed Central  PubMed  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Yoshizumi T, Takase T, Matsui M, Kiyosue T (2011) Overexpression of LOV KELCH PROTEIN2 enhances cell elongation and increases cell number and ploidy in the hypocotyl of Arabidopsis thaliana. Plant Biotechnol 28:267–272

    Article  CAS  Google Scholar 

  • Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72:353–363

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N-H, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22:594–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–340

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Maloof JN (2006) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Harmer SL, Maloof JN (2011) Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol 156:357–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodríguez-Concepción M, Martínez-García JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitoh A, Takase T, Kitaki H, Kiyosue T (2015a) Gene expression profile of Arabidopsis plants that overexpress ZEITLUPE/LOV KELCH PROTEIN1: up-regulation of auxin-inducible genes in hypocotyls. Plant Biotechnol. doi:10.5511/plantbiotechnology.15.0615b

    Google Scholar 

  • Saitoh A, Takase T, Kitaki H, Miyazaki Y, Kiyosue T (2015b) Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: downregulation of auxin-inducible genes in hypocotyls. Plant Signal Behav 10:e1071752

    Article  PubMed  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc Natl Acad Sci USA 111:18781–18786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM (2014) SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takase T, Nishiyama Y, Tanihibashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67:608–621

    Article  CAS  PubMed  Google Scholar 

  • Takase T, Miyazaki Y, Yasuhara M, Mitsui S, Kiyosue T (2015) Pleiotropic phenotype of transgenic Arabidopsis plants that produce the LOV domain of LOV KELCH PROTEIN2 (LKP2). Plant Biotechnol doi:10.5511/plantbiotechnology.15.0808b

    Google Scholar 

  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22:259–271

    Article  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Verbelen JP, van der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. J Exp Bot 55:2015–2027

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoltowski BD, Imaizumi T (2014) Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes 35:213–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Dr. K. Hayashi (Okayama University of Science, Okayama, Japan) for kindly providing PEO-IAA, Dr. J. N. Maloof (University of California, Davis, CA, USA) for kindly providing pif4 and pif5 seeds, and ABRC for providing axr2-1 and axr3-1 seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Kiyosue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by P. P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1. Primers and the number cycles used in RT-PCR (XLSX 10 kb)

Table S2. Genes up-regulated in GFP-LKP2 hypocotyls in comparison with controls (Col and GFP) (XLSX 97 kb)

Table S3. Genes down-regulated in GFP-LKP2 hypocotyls in comparison with controls (Col and GFP) (XLSX 87 kb)

299_2015_1896_MOESM4_ESM.xlsx

Table S4. Pathway analysis of genes up-regulated in GFP-LKP2 hypocotyls performed with the Gene Functional Classification Tool in DAVID Bioinformatics Resources 6.7 (XLSX 20 kb)

299_2015_1896_MOESM5_ESM.xlsx

Table S5. Pathway analysis of genes down-regulated in GFP-LKP2 hypocotyls performed with the Gene Functional Classification Tool in DAVID Bioinformatics Resources 6.7 (XLSX 22 kb)

299_2015_1896_MOESM6_ESM.tif

Supplemental Fig. S1. Embryos of control (Col and GFP) and GFP-LKP2 (lines GFP-LKP2-1 and GFP-LKP2-2). (A) Embryos were surgically excised from 6-h water-imbibed seeds and stained with 0.1 % (w/v) Toluidine blue. Bars = 250 μm (B) Epidermal cell number on a 250-μm line along the long axis of the hypocotyl at its thickest part were counted. Error bars represent standard error of the mean (n = 5–10); the same letters indicate no statistically significant differences (P ≥ 0.05, Tukey’s test) (TIFF 20705 kb)

299_2015_1896_MOESM7_ESM.tif

Supplemental Fig. S2. Seedling growth. (A) Control (Col and GFP) and GFP-LKP2 (lines GFP-LKP2-1 and GFP-LKP2-2) seeds and seedlings grown on the germination medium for 0 to 7 days under continuous white light (80 μmol·m−2·s−1) at 22 °C. (B) Time course of hypocotyl elongation (TIFF 11131 kb)

299_2015_1896_MOESM8_ESM.jpg

Supplemental Fig. S3. Five-day-old control (Col and GFP) and GFP-LKP2 seedlings (lines GFP-LKP2-1 and GFP-LKP2-2) in the absence or presence of indicated concentrations of N-1-naphthylphthalamic acid (NPA), p-chlorophenoxyisobutyric acid (PCIB), or α-(phenylethyl-2-one)-indole-3-acetic acid (PEO-IAA). Bar = 5 mm (JPEG 908 kb)

299_2015_1896_MOESM9_ESM.tif

Supplemental Fig. S4. Inhibition of hypocotyl elongation by auxin inhibitors. Hypocotyl length of 5-day-old control (Col and GFP) and GFP-LKP2 seedlings (lines GFP-LKP2-1 and GFP-LKP2-2) in the absence or presence of the indicated concentrations of N-1-naphthylphthalamic acid (NPA), p-chlorophenoxyisobutyric acid (PCIB), or α-(phenylethyl-2-one)-indole-3-acetic acid (PEO-IAA). Error bars represent standard error of the mean (n = 7–15); different letters indicate statistically significant differences (P < 0.05, Tukey’s test) (TIFF 5375 kb)

Supplemental Fig. S5. Model of the enhancement of hypocotyl elongation by LKP2 (and possibly by ZTL) (TIFF 8641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, Y., Jikumaru, Y., Takase, T. et al. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana . Plant Cell Rep 35, 455–467 (2016). https://doi.org/10.1007/s00299-015-1896-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1896-4

Keywords

Navigation