Skip to main content
Log in

Molecular cloning and characterization of two manganese superoxide dismutases from Miscanthus × giganteus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Six MnSOD genes were isolated from five Miscanthus species. MgMnSOD1 functions in mitochondria and MgMnSOD1 seems to be the main MnSOD gene involved in stress response of M× giganteus.

Abstract

Miscanthus × giganteus is a promising biomass energy crop with advantages of vigorous growth, high yield, low fertilizer and pesticide inputs. However, poor overwinter ability limits its widespread cultivation. Moreover, narrow genetic base may increase the risk of susceptibility to diseases and pests. Manganese superoxide dismutase (MnSOD), an important antioxidant enzyme involved in stress tolerance is able to protect plant cells from accumulated reactive oxygen species by converting superoxide to peroxide and oxygen. In many plants, overexpression of MnSOD has shown the ability to enhance the resistance to various stresses. This article describes the studies performed in an attempt to elucidate the molecular and enzymatic properties of MnSODs in M. × giganteus. MnSOD genes from M. × giganteus (MgMnSOD1, MgMnSOD2), M. lutarioriparia (MlMnSOD), M. sacchariflora (MsaMnSOD), M. sinensis (MsiMnSOD), and M. floridulus (MfMnSOD) were cloned and sequenced. The sequence analysis and expression patterns of MgMnSOD1 and MgMnSOD2 suggest that they were orthologous genes which were inherited from the two parents, M. sacchariflora and M. sinensis, respectively. In addition, MgMnSOD1 is predicted to be the main MnSOD gene involved in stress response of M. × giganteus. The activity of purified recombinant MgMnSOD1 was 1854.79 ± 39.98 U mg−1 (mean ± SD). Further enzymatic assays revealed that the protein exhibited an outstanding thermal stability. MgMnSOD1 is predicted to be targeted to mitochondria and involved in removing the superoxide radical generated by respiration. The presence and sequences of other SOD isozymes transcripts were also investigated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K, M-a Takahashi, Nagate M (1974) Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38:471–473

    Article  CAS  Google Scholar 

  • Baum J, Scandalios J (1982) Multiple genes controlling superoxide dismutase expression in maize. J Hered 73:95–100

    CAS  Google Scholar 

  • Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Article  Google Scholar 

  • Bowler C, Alliotte T, De Loose M, Van Montagu M, Inze D (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8:31–38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bueno P, Luis A (1992) Purification and properties of glyoxysomal cuprozinc superoxide dismutase from watermelon cotyledons (Citrullus vulgaris Schrad). Plant Physiol 98:331–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannon RE, Scandalios JG (1989) Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Mol Gen Genet 219:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cannon RE, White JA, Scandalios JG (1987) Cloning of cDNA for maize superoxide dismutase 2 (SOD2). Proc Natl Acad Sci USA 84:179–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chae WB, Hong SJ, Gifford JM, Rayburn AL, Sacks EJ, Juvik JA (2014) Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy 6:646–660

    Article  CAS  Google Scholar 

  • Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260:726–735

    Article  CAS  PubMed  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Change Biol 10:509–518

    Article  Google Scholar 

  • Corpas FJ, Sandalio LM, Del Rio LA, Trelease RN (1998) Copper–zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. New Phytol 138:307–314

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1985) NADPH-dependent O2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    Article  CAS  Google Scholar 

  • Dong C, Li G, Li Z, Zhu H, Zhou M, Hu Z (2009) Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera. Appl Biochem Biotech 158:605–614

    Article  CAS  Google Scholar 

  • Droillard M-J, Paulin A (1990) Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156:474–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149:337–345

    Article  Google Scholar 

  • Fernández-Ocaña A, Chaki M, Luque F et al (2011) Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. J Plant Physiol 168:1303–1308

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plantarum 119:355–364

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill T, Sreenivasulu Y, Kumar S, Ahuja PS (2010) Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana. J Plant Physiol 167:757–760

    Article  CAS  PubMed  Google Scholar 

  • Greef J, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Angew Bot 67:87–90

    Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1978) Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140:81–88

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnLintron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kanematsu S, Fujita K (2009) Assignment of new cDNA for maize chloroplastic CuZn-superoxide dismutase (SOD-1) and structural characterization of sod-1 genes. Bull Minamikyushu Univ 39:89–101

    Google Scholar 

  • Kanematsu S, Okayasu M, Ueno S (2013) Atypical cytosol-localized Fe-superoxide dismutase in the moss Pogonatum inflexum. Bull Minamikyushu Univ 43A:23–31

    Google Scholar 

  • Khanna-Chopra R, Jajoo A, Semwal VK (2011) Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochem Biophys Res Commun 412:522–525

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruger N (2009) The Bradford method for protein quantitation. In: Walker J (ed) The Protein protocols handbook. Springer protocols handbooks. Humana Press, New York, pp 17–24

    Chapter  Google Scholar 

  • Lai LS, Chang PC, Chang CT (2008) Isolation and characterization of superoxide dismutase from wheat seedlings. J Agric Food Chem 56:8121–8129

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119:297–300

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Chen Y, de Beus M et al (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKersie B, Murnaghan J, Bowley S (1997) Manipulating freezing tolerance in transgenic plants. Acta Physiol Plant 19:485–495

    Article  CAS  Google Scholar 

  • Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Herr EH, Orvar BL, van Camp W, Willekens H, Inzé D, Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moller IM, Sweetlove LJ (2010) ROS signalling—specificity is required. Trends Plant Sci 15:370–374

    Article  CAS  PubMed  Google Scholar 

  • Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M (2003) Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiol 133:773–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1996) Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol 37:790–799

    Article  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  CAS  PubMed  Google Scholar 

  • Que Y, Xu L, Liu J, Guo J, Chen R (2012) Molecular cloning and expression analysis of a Mn-superoxide dismutase gene in sugarcane. Afr J Biotechnol 11:552–560

    CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. In: John GS (ed) Advances in genetics, vol 28. Academic Press, Dublin, pp 1–41

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225–233

    Article  CAS  PubMed  Google Scholar 

  • Tsang EW, Bowler C, Hérouart D et al (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J-M, Botterman J, Moens T, Van Montagu M, Inzé D (1999) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 50:71–78

    Article  Google Scholar 

  • Wang D, Portis AR Jr, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White JA, Scandalios JG (1988) Isolation and characterization of a cDNA for mitochondrial manganese superoxide dismutase (SOD-3) of maize and its relation to other manganese superoxide dismutases. Biochim Biophys Acta 951:61–70

    Article  CAS  PubMed  Google Scholar 

  • Wong-Vega L, Burke JJ, Allen RD (1991) Isolation and sequence analysis of a cDNA that encodes pea manganese superoxide dismutase. Plant Mol Biol 17:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Robertson A, Wilen R, Gusta L (1997) Isolation and characterisation of two cDNAs (Accession Nos. U72212 and U73172) encoding mitochondrial manganese superoxide dismutases in wheat. Plant Physiol 113:664

    Article  Google Scholar 

  • Wu G, Wilen RW, Robertson AJ, Gusta LV (1999) Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol 120:513–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu TH, Liao MH, Kuo WY, Huang CH, Hsieh HL, Jinn TL (2011) Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): cloning, expression and regulation. Plant Physiol Biochem 49:195–200

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Scandalios JG (1993) Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proc Natl Acad Sci USA 90:9310–9314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Juying Wu for generously providing the M. × giganteus rhizomes. This research was financially supported by the National High Technology Research and Development Program (863 Program, Project No. 2012AA101801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongli Hu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Communicated by K. K. Kamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Cheng, N., Zheng, X. et al. Molecular cloning and characterization of two manganese superoxide dismutases from Miscanthus × giganteus . Plant Cell Rep 34, 2137–2149 (2015). https://doi.org/10.1007/s00299-015-1857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1857-y

Keywords

Navigation