Skip to main content
Log in

FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species.

Abstract

Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Twab MH, Kondo K (2012) Physical mapping of 5S and 45S rDNA in Chrysanthemum and related genera of the Anthemideae by FISH, and species relationships. J Genet 91:245–249

    Article  PubMed  Google Scholar 

  • Akasaka M, Ueda Y, Koba T (2003) Karyotype analysis of wild rose species belonging to septets B, C and D by molecular cytogenetic method. Breed Sci 53:177–182

    Article  Google Scholar 

  • Ali H, Lysak M, Schubert I (2004) Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in inter-specific Arabidopsis hybrids. Genome 47:954–960

    Article  CAS  PubMed  Google Scholar 

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordon-Kamm W, Tingey S (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177

    Article  CAS  PubMed  Google Scholar 

  • Benabdelmouna A, Abirached-Darmency M (1997) Distribution and chromosomal organization of 18S-5.8S-25S and 5S rDNA in Petunia species. Agronomie 17:349–360

    Article  Google Scholar 

  • Brammer SP, Poersch LB, Oliveira AR, Vasconcelos S (2009) Hibridização Genômica in situ em Triticeae: Um Enfoque Metodológico. Embrapa Trigo, Passo Fundo. Available at [http://www.cnpt.embrapa.br/biblio/co/p_co270.html]. Accessed 7 Dec 2012

  • Chung MY, Chung JD, Ramanna M, van Tuyl JM, Lim KB (2013) Production of polyploids and unreduced gametes in Lilium auratum × L. henryi hybrid. Int J Biol Sci 9:693–701

    Article  PubMed Central  PubMed  Google Scholar 

  • Contreras RN, Ruter JM, Conner J, Zeng Y, Ozias-Akins P (2012) Confirmation of hybridity using GISH and determination of 18S rDNA copy number using FISH in interspecific F1 hybrids of Tecoma (Bignoniaceae). Genome 55:437–445

    Article  CAS  PubMed  Google Scholar 

  • De Jeu MJ, Lasschuit J, Kuipers AGJ, Kamstra SA, Visser RGF (1997) Characterization and localization of repetitive DNA sequences in the ornamental Alstroemeria aurea Graham. Theor Appl Genet 94:982–990

    Article  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:95–102

    Article  PubMed  Google Scholar 

  • Fransz PF, Stam M, Montijn B, Hoopen RT, Wiegant J, Kooter JM, Oud O, Nanninga N (1996) Detection of singlecopy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J 9:767–774

    Article  CAS  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Nat Acad Sci 63:378–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao T, Sun H, Fang L, Qian H, Xin H, Shi J, Wu Z, Xi M (2014) Cytogenetic analysis of Asiatic lily cultivars and their hybrids using fluorescence in situ hybridization. Acta Hortic 1027:177–184

    Google Scholar 

  • Guerra M (2004) Hybridization in situ: princípios Básicos. In: Guerra M (ed) FISH: conceitos e Aplicações na Citogenética. Sociedade Brasileira de Genética, Ribeirão Preto, pp 1–32

    Google Scholar 

  • Guzzo F, Campagnari E, Levi M (2000) A new FISH protocol with increased sensitivity for physical mapping with short probes in plants. J Exp Bot 51:965–970

    Article  CAS  PubMed  Google Scholar 

  • Hanzi HE (2009) Introgression of Tulipa fosteriana into Tulipa gesneriana. Thesis (PBR-80436)

  • Harper LC, Sen TZ, Lawrence CJ (2012) Plant cytogenetics in genome databases. Plant Genet Genomics Crops Models 4:311–322

    Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leich AR, Shi M, Leich IJ (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115

    Google Scholar 

  • Hwang YJ, Kim HH (2014) Application and necessity of plant cytogenetics in floricultural research. Flower Res J 22:1–7

    Article  Google Scholar 

  • Hwang YJ, Kim HH, Kim JB, Lim KB (2011) Karyotype analysis of Lilium tigrinum by FISH. Hortic Environ Biotechnol 52:292–297

    Article  Google Scholar 

  • Hwang YJ, Younis A, Ryu KB, Lim KB, Eun CH, Lee JH, Sohn SH, Kwon SJ (2013) Karyomorphological analysis of wild Chrysanthemum boreale in Korea. Flower Res J 21:182–189

    Article  Google Scholar 

  • Hwang YJ, Yang TJ, Kim HH, Younis A, Lim KB (2015a) Random PCR of micro-dissected chromosome amplified predominantly repeated DNA in Lilium tigrinum. Int J Agric Biol 17:169–174

    CAS  Google Scholar 

  • Hwang YJ, Song CM, Younis A, Kim CK, Kang YI, Lim KB (2015b) Morphological characterization under different ecological habitats and physical mapping of 5S and 45S rDNA in Lilium distichum with Fluorescence in situ hybridization. Rev Chil de Hist Nat 88:8. doi:10.1186/s40693-015-0037-3

    Article  Google Scholar 

  • Iwano M, Sakamoto K, Suzuki G, Watanabe M, Takayama S, Fukui K, Hinata K, Isogai A (1998) Visualization of a self-incompatibility gene in Brassica campestris L. by multicolor FISH. Theor Appl Genet 96:751–757

    Article  CAS  Google Scholar 

  • Jiang JM, Gill BS (1994) Non-isotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Jiang JB, Gill S, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan TP, Zilfalil BA (2009) Cytogenetics: past, present and future. Malays J Med Sci 16:4–9

    PubMed Central  PubMed  Google Scholar 

  • Karlov GI, Khrustaleva LI, Lim KB, van Tuyl JM (1999) Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686

    Article  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Khan MN (2009) A molecular cytogenetic study of intergenomic recombination and introgression of chromosomal segments in lilies (Lilium), PhD-thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Khan N, Barba-Gonzalez R, Ramanna MS, Visser RG, van Tuyl JM (2009a) Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome 5:238–251

    Google Scholar 

  • Khan N, Zhou S, Ramanna MS, Arens P, Herrera J, Visser RGF, van Tuyl JM (2009b) Potential for analytic breeding in allopolyploids: an illustration from Longiflorum and Asiatic hybrid lilies (Lilium). Euphytica 166:399–409

    Article  Google Scholar 

  • Khan N, Barba-Gonzalez R, Ramanna MS, Arens P, Visser RGF, van Tuyl JM (2010) Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids. Euphytica 171:157–173

    Article  Google Scholar 

  • Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee HI, Younis A, Hwang YJ, Kang YI, Lim KB (2014) Molecular cytogenetic analysis and phylogenetic relationship of 5S and 45S ribosomal DNA in Sinomartagon Lilium species by fluorescence in situ hybridization (FISH). Hortic Environ Biotechnol 55:514–523

    Article  CAS  Google Scholar 

  • Lim KB (2000) Introgression breeding through interspecific polyploidisation in lily: a molecular cytogenetic study. PhD-thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, De Jong JH, Van Tuyl JM (2000) Introgeression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Ramanna MS, De Jong JH, Jacobsen E, Van Tuyl JM (2001a) Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet 103:219–230

    Article  CAS  Google Scholar 

  • Lim KB, Wennekes J, de Jong JH, Jacobsen E, van Tuyl JM (2001b) Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Ramanna MS, Jacobsen E, Van Tuyl JM (2003) Evaluation of BC2 progenies derived from 3x–2x and 3x–4x crosses of Lilium hybrids: a GISH analysis. Theor Appl Genet 106:568–574

    PubMed  Google Scholar 

  • Lin CC, Chen YH, Chen WH, Chen CC, Kao YY (2005) Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Acad Sin 46:339–345

    CAS  Google Scholar 

  • Luo JR, Ramanna MS, Arens P, Niu LX, van Tuyl JM (2012) GISH analyses of backcross progenies of two Lilium species hybrids and their relevance to breeding. Hortic Sci Biotechnol 87:654–660

    Google Scholar 

  • Lysak MA, Mandáková T (2013) Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol Biol 990:13–24

    Article  CAS  PubMed  Google Scholar 

  • Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7

    Article  PubMed  Google Scholar 

  • Marasek A, Mizuochi H, Okazaki K (2006) The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290

    Article  Google Scholar 

  • Markova M, Lengerova M, Zluvova J, Janousek B, Vyskot B (2006) Karyological analysis of an interspecific hybrid between the dioecious Silene latifolia and the hermaphroditic Silene viscosa. Genome 49:373–379

    Article  PubMed  Google Scholar 

  • Martınez J, Vargas P, Luceno M (2010) Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of n rDNA (5S, 45S) and trnL–trnF sequence analysis. Plant Syst Evol 289:223–235

    Article  Google Scholar 

  • Mizuochi H, Marasek A, Okazaki K (2007) Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica 155:235–248

    Article  CAS  Google Scholar 

  • Mühlmann M (2002) Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res 1:117–127

    PubMed  Google Scholar 

  • Noda S (1978) Chromosomes of diploid and triploid forms found in the natural populations of tiger lily in Tsushima. Bot Magn Tokyo 91:279–283

    Article  Google Scholar 

  • Noda S (1986) Cytogenetics behavior, chromosome differentiations, and geographic distribution in Lilium lancifolium (Liliaceae). Plant Species Biol 1:69–78

    Article  Google Scholar 

  • Parokonny AS, Marshall JA, Bennett MD, Cocking EC (1997) Homoeologous paring and recombination in backcross derivatives of tomato somatic hybrids [Lycopersicon esculentum (+) L. peruvianum]. Theor Appl Genet 94:713–723

    Article  CAS  Google Scholar 

  • Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417

    Article  CAS  PubMed  Google Scholar 

  • Peñaloza APS, Pozzobon MT (2007) Caracterização citogenética de germoplasma vegetal. In: Nass LL (ed) Recursos genéticos vegetais. Embrapa Recursos Genéticos e Biotecnologia, Brasília, pp 308–342

    Google Scholar 

  • Popescu A, Sutan AN (2012) Classical and molecular cytogenetic studies for breeding and selection of tulips. Univ Pitesti 1:116–122

    Google Scholar 

  • Schwarzacher T, Haslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford OX4 IRE, UK

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jiak JZ, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786

    CAS  PubMed  Google Scholar 

  • Shen DL, Wang ZF, Wu M (1987) Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma 95:311–314

    Article  Google Scholar 

  • Silva GS, Souza MM (2013) Genomic in situ hybridization in plants. Genet Mol Res 12:2953–2965

    Article  CAS  PubMed  Google Scholar 

  • Song NH (1987) Analysis of C-banded karyotypes and chromosomal relationships of Lilium species. Ph.D. thesis, Kyungpook National University Daegu, Korea

  • Souza MM, Urdampilleta JD, Forni-Martins ER (2010) Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora. Genet Mol Res 9:2148–2155

    Article  CAS  PubMed  Google Scholar 

  • Tonnies H (2002) Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 8:246–250

    Article  CAS  PubMed  Google Scholar 

  • Valente GT, Carlos HS, Maria CG, Eliana F, Cesar M (2009) Comparative cytogenetics of cichlid fishes through genomic in situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosome Res 17:791–799

    Article  CAS  Google Scholar 

  • van Tuyl JM, Chung MY, Chung JD, Lim KB (2002) Introgression with Lilium hybrids. Lily Yearb N Am Lily Soc 55:17–22

    Google Scholar 

  • Wang CJ, Carlton PM, Golubovskaya IN, Cande WZ (2009) Interlock formation and coiling of meiotic chromosome axes during synapsis. Genetics 183:905–915

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Xie S, Zhang Y, Niu L (2012) Chromosome analysis and mapping of ribosomal genes by fluorescence in situ hybridization (FISH) in four endemic lily species (Lilium) in Qinling Mountians, China. Pak J Bot 44:1319–1323

    Google Scholar 

  • Watanabe K, Peloquin SJ, Endo M (1991) Genetic significance of mode of polyploidization: somatic doubling or 2n gametes? Genome 34:28–34

    Article  Google Scholar 

  • Xie S (2012) A molecular cytogenetic analysis of chromosome behavior in Lillium hybrids, PhD-thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Xie S, Khan N, Ramanna MS, Niu L, Marasek-Ciolakowska A, Arens P, van Tuyl JM (2010) An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids. Genome 53:439–446

    Article  PubMed  Google Scholar 

  • Xu J, Earle ED (1994) Direct and sensitive fluorescence in situ hybridization of 45S rDNA on tomato chromosomes. Genome 37:1062–1065

    Article  CAS  PubMed  Google Scholar 

  • Younis A, Hwang YJ, Lim KB (2014) Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33:215–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yang Q, Bao W, Zhang Y, Han B, Xue Y, Cheng Z (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang P, Friebe B, Gill B, Park RF (2007) A cytogenetics in the age of molecular genetics. Aust J Agric Res 58:498–506

    Article  CAS  Google Scholar 

  • Zhao HB, Zhao LJ, Zhao LW, Yuan HM, Zhang YM, Xin WL, Sun LF, Guo CH, Li JL (2013) Chromosome deletion and translocation in chinese spring-lophopyrum elongatum 6E disomic addition lines induced by the gametocidal chromosome 2C from Aegilops cylindrical. Biotechnol Biotechnol Equip 27:3638–3643

    Article  Google Scholar 

  • Zhou S (2007) Intergenomic recombination and introgression breeding in Longiflorum × Asiatic lilies, PhD-thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Zhou S, Ramanna MS, Visser RGF, van Tuyl JM (2008) Analysis of the meiosis in the F1 hybrids of Longiflorum × Asiatic (LA) of lilies (Lilium) using genomic in situ hybridization. J Genet Genomics 35:687–695

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-1-WTM11), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS).

Conflict of interest

The authors declare that they have no competing interests of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Younis.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younis, A., Ramzan, F., Hwang, YJ. et al. FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34, 1477–1488 (2015). https://doi.org/10.1007/s00299-015-1828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1828-3

Keywords

Navigation