Plant Cell Reports

, Volume 34, Issue 9, pp 1477–1488 | Cite as

FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants

  • Adnan Younis
  • Fahad Ramzan
  • Yoon-Jung Hwang
  • Ki-Byung Lim


Key message

The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species.


Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.


Banding techniques Chromosome characterization In situ hybridization Physical mapping Polyploidization 



This research was supported by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-1-WTM11), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS).

Conflict of interest

The authors declare that they have no competing interests of this manuscript.


  1. Abd El-Twab MH, Kondo K (2012) Physical mapping of 5S and 45S rDNA in Chrysanthemum and related genera of the Anthemideae by FISH, and species relationships. J Genet 91:245–249CrossRefPubMedGoogle Scholar
  2. Akasaka M, Ueda Y, Koba T (2003) Karyotype analysis of wild rose species belonging to septets B, C and D by molecular cytogenetic method. Breed Sci 53:177–182CrossRefGoogle Scholar
  3. Ali H, Lysak M, Schubert I (2004) Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in inter-specific Arabidopsis hybrids. Genome 47:954–960CrossRefPubMedGoogle Scholar
  4. Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordon-Kamm W, Tingey S (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177CrossRefPubMedGoogle Scholar
  5. Benabdelmouna A, Abirached-Darmency M (1997) Distribution and chromosomal organization of 18S-5.8S-25S and 5S rDNA in Petunia species. Agronomie 17:349–360CrossRefGoogle Scholar
  6. Brammer SP, Poersch LB, Oliveira AR, Vasconcelos S (2009) Hibridização Genômica in situ em Triticeae: Um Enfoque Metodológico. Embrapa Trigo, Passo Fundo. Available at []. Accessed 7 Dec 2012
  7. Chung MY, Chung JD, Ramanna M, van Tuyl JM, Lim KB (2013) Production of polyploids and unreduced gametes in Lilium auratum × L. henryi hybrid. Int J Biol Sci 9:693–701PubMedCentralCrossRefPubMedGoogle Scholar
  8. Contreras RN, Ruter JM, Conner J, Zeng Y, Ozias-Akins P (2012) Confirmation of hybridity using GISH and determination of 18S rDNA copy number using FISH in interspecific F1 hybrids of Tecoma (Bignoniaceae). Genome 55:437–445CrossRefPubMedGoogle Scholar
  9. De Jeu MJ, Lasschuit J, Kuipers AGJ, Kamstra SA, Visser RGF (1997) Characterization and localization of repetitive DNA sequences in the ornamental Alstroemeria aurea Graham. Theor Appl Genet 94:982–990CrossRefGoogle Scholar
  10. Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:95–102CrossRefPubMedGoogle Scholar
  11. Fransz PF, Stam M, Montijn B, Hoopen RT, Wiegant J, Kooter JM, Oud O, Nanninga N (1996) Detection of singlecopy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J 9:767–774CrossRefGoogle Scholar
  12. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Nat Acad Sci 63:378–383PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gao T, Sun H, Fang L, Qian H, Xin H, Shi J, Wu Z, Xi M (2014) Cytogenetic analysis of Asiatic lily cultivars and their hybrids using fluorescence in situ hybridization. Acta Hortic 1027:177–184Google Scholar
  14. Guerra M (2004) Hybridization in situ: princípios Básicos. In: Guerra M (ed) FISH: conceitos e Aplicações na Citogenética. Sociedade Brasileira de Genética, Ribeirão Preto, pp 1–32Google Scholar
  15. Guzzo F, Campagnari E, Levi M (2000) A new FISH protocol with increased sensitivity for physical mapping with short probes in plants. J Exp Bot 51:965–970CrossRefPubMedGoogle Scholar
  16. Hanzi HE (2009) Introgression of Tulipa fosteriana into Tulipa gesneriana. Thesis (PBR-80436)Google Scholar
  17. Harper LC, Sen TZ, Lawrence CJ (2012) Plant cytogenetics in genome databases. Plant Genet Genomics Crops Models 4:311–322Google Scholar
  18. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165CrossRefPubMedGoogle Scholar
  19. Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leich AR, Shi M, Leich IJ (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115Google Scholar
  20. Hwang YJ, Kim HH (2014) Application and necessity of plant cytogenetics in floricultural research. Flower Res J 22:1–7CrossRefGoogle Scholar
  21. Hwang YJ, Kim HH, Kim JB, Lim KB (2011) Karyotype analysis of Lilium tigrinum by FISH. Hortic Environ Biotechnol 52:292–297CrossRefGoogle Scholar
  22. Hwang YJ, Younis A, Ryu KB, Lim KB, Eun CH, Lee JH, Sohn SH, Kwon SJ (2013) Karyomorphological analysis of wild Chrysanthemum boreale in Korea. Flower Res J 21:182–189CrossRefGoogle Scholar
  23. Hwang YJ, Yang TJ, Kim HH, Younis A, Lim KB (2015a) Random PCR of micro-dissected chromosome amplified predominantly repeated DNA in Lilium tigrinum. Int J Agric Biol 17:169–174Google Scholar
  24. Hwang YJ, Song CM, Younis A, Kim CK, Kang YI, Lim KB (2015b) Morphological characterization under different ecological habitats and physical mapping of 5S and 45S rDNA in Lilium distichum with Fluorescence in situ hybridization. Rev Chil de Hist Nat 88:8. doi: 10.1186/s40693-015-0037-3 CrossRefGoogle Scholar
  25. Iwano M, Sakamoto K, Suzuki G, Watanabe M, Takayama S, Fukui K, Hinata K, Isogai A (1998) Visualization of a self-incompatibility gene in Brassica campestris L. by multicolor FISH. Theor Appl Genet 96:751–757CrossRefGoogle Scholar
  26. Jiang JM, Gill BS (1994) Non-isotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725CrossRefPubMedGoogle Scholar
  27. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  28. Jiang JB, Gill S, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kannan TP, Zilfalil BA (2009) Cytogenetics: past, present and future. Malays J Med Sci 16:4–9PubMedCentralPubMedGoogle Scholar
  30. Karlov GI, Khrustaleva LI, Lim KB, van Tuyl JM (1999) Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686CrossRefGoogle Scholar
  31. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169CrossRefPubMedGoogle Scholar
  32. Khan MN (2009) A molecular cytogenetic study of intergenomic recombination and introgression of chromosomal segments in lilies (Lilium), PhD-thesis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  33. Khan N, Barba-Gonzalez R, Ramanna MS, Visser RG, van Tuyl JM (2009a) Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome 5:238–251Google Scholar
  34. Khan N, Zhou S, Ramanna MS, Arens P, Herrera J, Visser RGF, van Tuyl JM (2009b) Potential for analytic breeding in allopolyploids: an illustration from Longiflorum and Asiatic hybrid lilies (Lilium). Euphytica 166:399–409CrossRefGoogle Scholar
  35. Khan N, Barba-Gonzalez R, Ramanna MS, Arens P, Visser RGF, van Tuyl JM (2010) Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids. Euphytica 171:157–173CrossRefGoogle Scholar
  36. Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121PubMedCentralCrossRefPubMedGoogle Scholar
  37. Lee HI, Younis A, Hwang YJ, Kang YI, Lim KB (2014) Molecular cytogenetic analysis and phylogenetic relationship of 5S and 45S ribosomal DNA in Sinomartagon Lilium species by fluorescence in situ hybridization (FISH). Hortic Environ Biotechnol 55:514–523CrossRefGoogle Scholar
  38. Lim KB (2000) Introgression breeding through interspecific polyploidisation in lily: a molecular cytogenetic study. PhD-thesis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  39. Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, De Jong JH, Van Tuyl JM (2000) Introgeression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125CrossRefPubMedGoogle Scholar
  40. Lim KB, Ramanna MS, De Jong JH, Jacobsen E, Van Tuyl JM (2001a) Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet 103:219–230CrossRefGoogle Scholar
  41. Lim KB, Wennekes J, de Jong JH, Jacobsen E, van Tuyl JM (2001b) Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918CrossRefPubMedGoogle Scholar
  42. Lim KB, Ramanna MS, Jacobsen E, Van Tuyl JM (2003) Evaluation of BC2 progenies derived from 3x–2x and 3x–4x crosses of Lilium hybrids: a GISH analysis. Theor Appl Genet 106:568–574PubMedGoogle Scholar
  43. Lin CC, Chen YH, Chen WH, Chen CC, Kao YY (2005) Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Acad Sin 46:339–345Google Scholar
  44. Luo JR, Ramanna MS, Arens P, Niu LX, van Tuyl JM (2012) GISH analyses of backcross progenies of two Lilium species hybrids and their relevance to breeding. Hortic Sci Biotechnol 87:654–660Google Scholar
  45. Lysak MA, Mandáková T (2013) Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol Biol 990:13–24CrossRefPubMedGoogle Scholar
  46. Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7CrossRefPubMedGoogle Scholar
  47. Marasek A, Mizuochi H, Okazaki K (2006) The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290CrossRefGoogle Scholar
  48. Markova M, Lengerova M, Zluvova J, Janousek B, Vyskot B (2006) Karyological analysis of an interspecific hybrid between the dioecious Silene latifolia and the hermaphroditic Silene viscosa. Genome 49:373–379CrossRefPubMedGoogle Scholar
  49. Martınez J, Vargas P, Luceno M (2010) Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of n rDNA (5S, 45S) and trnL–trnF sequence analysis. Plant Syst Evol 289:223–235CrossRefGoogle Scholar
  50. Mizuochi H, Marasek A, Okazaki K (2007) Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica 155:235–248CrossRefGoogle Scholar
  51. Mühlmann M (2002) Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res 1:117–127PubMedGoogle Scholar
  52. Noda S (1978) Chromosomes of diploid and triploid forms found in the natural populations of tiger lily in Tsushima. Bot Magn Tokyo 91:279–283CrossRefGoogle Scholar
  53. Noda S (1986) Cytogenetics behavior, chromosome differentiations, and geographic distribution in Lilium lancifolium (Liliaceae). Plant Species Biol 1:69–78CrossRefGoogle Scholar
  54. Parokonny AS, Marshall JA, Bennett MD, Cocking EC (1997) Homoeologous paring and recombination in backcross derivatives of tomato somatic hybrids [Lycopersicon esculentum (+) L. peruvianum]. Theor Appl Genet 94:713–723CrossRefGoogle Scholar
  55. Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417CrossRefPubMedGoogle Scholar
  56. Peñaloza APS, Pozzobon MT (2007) Caracterização citogenética de germoplasma vegetal. In: Nass LL (ed) Recursos genéticos vegetais. Embrapa Recursos Genéticos e Biotecnologia, Brasília, pp 308–342Google Scholar
  57. Popescu A, Sutan AN (2012) Classical and molecular cytogenetic studies for breeding and selection of tulips. Univ Pitesti 1:116–122Google Scholar
  58. Schwarzacher T, Haslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford OX4 IRE, UKGoogle Scholar
  59. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in wide hybrid. Ann Bot 64:315–324Google Scholar
  60. Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jiak JZ, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786PubMedGoogle Scholar
  61. Shen DL, Wang ZF, Wu M (1987) Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma 95:311–314CrossRefGoogle Scholar
  62. Silva GS, Souza MM (2013) Genomic in situ hybridization in plants. Genet Mol Res 12:2953–2965CrossRefPubMedGoogle Scholar
  63. Song NH (1987) Analysis of C-banded karyotypes and chromosomal relationships of Lilium species. Ph.D. thesis, Kyungpook National University Daegu, KoreaGoogle Scholar
  64. Souza MM, Urdampilleta JD, Forni-Martins ER (2010) Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora. Genet Mol Res 9:2148–2155CrossRefPubMedGoogle Scholar
  65. Tonnies H (2002) Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 8:246–250CrossRefPubMedGoogle Scholar
  66. Valente GT, Carlos HS, Maria CG, Eliana F, Cesar M (2009) Comparative cytogenetics of cichlid fishes through genomic in situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosome Res 17:791–799CrossRefGoogle Scholar
  67. van Tuyl JM, Chung MY, Chung JD, Lim KB (2002) Introgression with Lilium hybrids. Lily Yearb N Am Lily Soc 55:17–22Google Scholar
  68. Wang CJ, Carlton PM, Golubovskaya IN, Cande WZ (2009) Interlock formation and coiling of meiotic chromosome axes during synapsis. Genetics 183:905–915PubMedCentralCrossRefPubMedGoogle Scholar
  69. Wang X, Xie S, Zhang Y, Niu L (2012) Chromosome analysis and mapping of ribosomal genes by fluorescence in situ hybridization (FISH) in four endemic lily species (Lilium) in Qinling Mountians, China. Pak J Bot 44:1319–1323Google Scholar
  70. Watanabe K, Peloquin SJ, Endo M (1991) Genetic significance of mode of polyploidization: somatic doubling or 2n gametes? Genome 34:28–34CrossRefGoogle Scholar
  71. Xie S (2012) A molecular cytogenetic analysis of chromosome behavior in Lillium hybrids, PhD-thesis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  72. Xie S, Khan N, Ramanna MS, Niu L, Marasek-Ciolakowska A, Arens P, van Tuyl JM (2010) An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids. Genome 53:439–446CrossRefPubMedGoogle Scholar
  73. Xu J, Earle ED (1994) Direct and sensitive fluorescence in situ hybridization of 45S rDNA on tomato chromosomes. Genome 37:1062–1065CrossRefPubMedGoogle Scholar
  74. Younis A, Hwang YJ, Lim KB (2014) Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33:215–223CrossRefPubMedGoogle Scholar
  75. Zhang D, Yang Q, Bao W, Zhang Y, Han B, Xue Y, Cheng Z (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335PubMedCentralCrossRefPubMedGoogle Scholar
  76. Zhang P, Friebe B, Gill B, Park RF (2007) A cytogenetics in the age of molecular genetics. Aust J Agric Res 58:498–506CrossRefGoogle Scholar
  77. Zhao HB, Zhao LJ, Zhao LW, Yuan HM, Zhang YM, Xin WL, Sun LF, Guo CH, Li JL (2013) Chromosome deletion and translocation in chinese spring-lophopyrum elongatum 6E disomic addition lines induced by the gametocidal chromosome 2C from Aegilops cylindrical. Biotechnol Biotechnol Equip 27:3638–3643CrossRefGoogle Scholar
  78. Zhou S (2007) Intergenomic recombination and introgression breeding in Longiflorum × Asiatic lilies, PhD-thesis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  79. Zhou S, Ramanna MS, Visser RGF, van Tuyl JM (2008) Analysis of the meiosis in the F1 hybrids of Longiflorum × Asiatic (LA) of lilies (Lilium) using genomic in situ hybridization. J Genet Genomics 35:687–695CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Adnan Younis
    • 1
    • 2
  • Fahad Ramzan
    • 1
  • Yoon-Jung Hwang
    • 3
  • Ki-Byung Lim
    • 1
  1. 1.Department of Horticultural ScienceKyungpook National UniversityDaeguSouth Korea
  2. 2.Institute of Horticultural SciencesUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of Life ScienceSahmyook UniversitySeoulSouth Korea

Personalised recommendations