Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480
PubMed Central
CAS
PubMed
Google Scholar
Ajjawi I, Lu Y, Savage LJ, Bell SM, Last RL (2010) Large-scale reverse genetics in Arabidopsis: case studies from the chloroplast 2010 project. Plant Physiol 152:529–540
PubMed Central
CAS
PubMed
Google Scholar
Ajjawi I, Coku A, Froehlich JE, Yang Y, Osteryoung KW, Benning C, Last RL (2011) A J-Like protein influences fatty acid composition of chloroplast lipids in Arabidopsis. PLoS One 6:e25368
PubMed Central
CAS
PubMed
Google Scholar
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657
PubMed
Google Scholar
Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling Omega-3-fatty-acid desaturation in Arabidopsis. Science 258:1353–1355
CAS
PubMed
Google Scholar
Baud S, Bourrellier ABF, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Mery S (2010) PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. Plant Journal 64:291–303
CAS
PubMed
Google Scholar
Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annual review of cell and developmental biology. Annual Reviews, Palo Alto, pp 71–91
Google Scholar
Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540
CAS
PubMed
Google Scholar
Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473
PubMed Central
CAS
PubMed
Google Scholar
Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711
PubMed Central
CAS
PubMed
Google Scholar
Browse J, Somerville C (1991) Glycerolipid synthesis-biochemistry and regulation. Annu Rev Plant Physiol Plant Molec Biol 42:467–506
CAS
Google Scholar
Browse J, McCourt P, Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227:763–765
CAS
PubMed
Google Scholar
Cao XY, Li KJ, Suh SG, Guo T, Becraft PW (2005) Molecular analysis of the CRINKLY4 gene family in Arabidopsis thaliana. Planta 220:645–657
CAS
PubMed
Google Scholar
Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585
CAS
PubMed
Google Scholar
Chen MX, Wang Z, Zhu YN, Li ZL, Hussain N, Xuan LJ, Guo WL, Zhang GP, Jiang LX (2012) The effect of TRANSPARENT TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160:1023–1036
PubMed Central
CAS
PubMed
Google Scholar
Chen MX, Xuan LJ, Wang Z, Zhou LH, Li ZL, Du X, Ali E, Zhang GP, Jiang LX (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol 165:905–916
CAS
PubMed
Google Scholar
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64
CAS
PubMed
Google Scholar
Deng W, Chen GQ, Peng F, Truksa M, Snyder CL, Weselake RJ (2012) Transparent Testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in Canola. Plant Physiol 160:978–989
PubMed Central
CAS
PubMed
Google Scholar
Distefano AM, Scuffi D, Garcia-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase D delta is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907
CAS
PubMed
Google Scholar
Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675
PubMed Central
CAS
PubMed
Google Scholar
Eastmond PJ, Quettier AL, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811
PubMed Central
CAS
PubMed
Google Scholar
Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of r gene-mediated disease resistance in arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96:3292–3297
PubMed Central
CAS
PubMed
Google Scholar
Finkelstein RR, Somerville CR (1990) 3 Classes of Abscisic-Acid (ABA)-insensitive mutations of arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179
PubMed Central
CAS
PubMed
Google Scholar
Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101
PubMed Central
CAS
PubMed
Google Scholar
Gao JP, Ajjawi I, Manoli A, Sawin A, Xu CC, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839
CAS
PubMed
Google Scholar
Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysopc to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62:989–1003
CAS
PubMed
Google Scholar
Gao M-J, Li X, Lui H, Gropp GM, Lydiate DD, Wei S, Hegedus DD (2011) ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signal Behav 6:1886–1888
PubMed Central
CAS
PubMed
Google Scholar
Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39
CAS
PubMed
Google Scholar
Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-Type transcription factor. Plant Cell 26:1666–1680
PubMed Central
CAS
PubMed
Google Scholar
Guo L, Yang HB, Zhang XY, Yang SH (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767
PubMed Central
CAS
PubMed
Google Scholar
Han XX, Yin LL, Xue HW (2012) Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis. J Integr Plant Biol 54:486–499
CAS
PubMed
Google Scholar
He YH, Gan SS (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815
PubMed Central
CAS
PubMed
Google Scholar
Höfte H, Desprez T, Amselem J, Chiapello H, Rouze P, Caboche M, Moisan A, Jourjon MF, Charpenteau JL, Berthomieu P, Guerrier D, Giraudat J, Quigley F, Thomas F, Yu DY, Mache R, Raynal M, Cooke R, Grellet F, Delseny M, Parmentier Y, Demarcillac G, Gigot C, Fleck J, Philipps G, Axelos M, Bardet C, Tremousaygue D, Lescure B (1993) An inventory of 1152 expressed sequence tags Obtained by partial sequencing of CDNAs from Arabidopsis thaliana. Plant J 4:1051–1061
PubMed
Google Scholar
Hong YY, Pan XQ, Welti R, Wang XM (2008) Phospholipase D alpha 3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816
PubMed Central
CAS
PubMed
Google Scholar
Hong YY, Devaiah SP, Bahn SC, Thamasandra BN, Li MY, Welti R, Wang XM (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387
PubMed Central
CAS
PubMed
Google Scholar
Hooker TS, Lam P, Zheng HQ, Kunst L (2007) A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19:904–913
PubMed Central
CAS
PubMed
Google Scholar
Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell (2):183–192
Google Scholar
Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 Gene Encodes A novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209
PubMed Central
CAS
PubMed
Google Scholar
Jakobson L, Lindgren LO, Verdier G, Laanemets K, Moldau H, Brosché M, Beisson F, Kollist H (2014) The α/β-hydrolase fold protein BODYGUARD is involved in the biosynthesis pathway of the cutin polymer in Arabidopsis. 21th International Symposium on Plant Lipids ISPL, Ontario, Canada 27
James CN, Horn PJ, Case CR, Gidda SK, Zhang DY, Mullen RT, Dyer JM, Anderson RGW, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833–17838
PubMed Central
CAS
PubMed
Google Scholar
Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96:13583–13588
PubMed Central
CAS
PubMed
Google Scholar
Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294
PubMed Central
CAS
PubMed
Google Scholar
Karim EK, Stephanie B, Emilia O, Anne-Marie G, Natalie F, Vincent A (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073
Google Scholar
Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43:107–117
CAS
PubMed
Google Scholar
Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou JT, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty-acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyl transferase activity. Plant Physiol 108:399–409
PubMed Central
CAS
PubMed
Google Scholar
Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46
PubMed Central
CAS
PubMed
Google Scholar
Keith K, Kraml M, Dengler NG, McCourt P (1994) fusca3—a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6:589–600
PubMed Central
CAS
PubMed
Google Scholar
Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS (2011) Endoplasmic reticulum- and golgi-localized phospholipase a (2) plays critical roles in Arabidopsis pollen development and germination. Plant Cell 23:94–110
PubMed Central
CAS
PubMed
Google Scholar
Kim RJ, Kim HJ, Kim HJ, Shim D, Carlson JE, Suh MC (2012) Protein structure modeling, expression patterns, subcellular localization, and enzymatic analysis of monoacylglycerol lipase (MAGL) gene family in Arabidopsis thaliana. 20th International Symposium on Plant Lipids ISPL, Seville, Spain 142
Kim HG, Kwon SJ, Jang YJ, Chung JH, Nam MH, Park OK (2014) GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Lett 588:1652–1658
CAS
PubMed
Google Scholar
Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci USA 106:20532–20537
PubMed Central
CAS
PubMed
Google Scholar
Kobayashi K, Fujii S, Sasaki D, Baba S, Ohta H, Masuda T, Wada H (2014) Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. Front Plant Sci 5: Article 272
Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O (2014) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J 80(2):216–229
PubMed Central
CAS
PubMed
Google Scholar
Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85:4143–4147
PubMed Central
CAS
PubMed
Google Scholar
Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux JP, Yephremov A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339
PubMed Central
CAS
PubMed
Google Scholar
Lam P, Zhao LF, McFarlane HE, Aiga M, Lam V, Hooker TS, Kunst L (2012) RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 159:1385–1395
PubMed Central
CAS
PubMed
Google Scholar
Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6:246–249
CAS
PubMed
Google Scholar
Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A (2) plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002
PubMed Central
CAS
PubMed
Google Scholar
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 Plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379:1038–1042
CAS
PubMed
Google Scholar
Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty-acid composition. Theor Appl Genet 80:234–240
CAS
PubMed
Google Scholar
Li G, Xue HW (2007) Arabidopsis PLD zeta 2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295
PubMed Central
CAS
PubMed
Google Scholar
Li MY, Bahn SC, Fan CC, Li J, Phan T, Ortiz M, Roth MR, Welti R, Jaworski J, Wang XM (2013) Patatin-related phospholipase pPLAIII delta increases seed oil content with long-chain fatty acids in Arabidopsis. Plant Physiol 162:39–51
PubMed Central
CAS
PubMed
Google Scholar
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-Lipid Metabolism. Arabidopsis Book/Am Soc Plant Biol 11:e0161
Google Scholar
Lippold F, vom Dorp K, Abraham M, Holzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, Stymne S, Dormann P (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001–2014
PubMed Central
CAS
PubMed
Google Scholar
Lloyd J, Meinke D (2012) A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. Plant Physiol 158:1115–1129
PubMed Central
CAS
PubMed
Google Scholar
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205
CAS
PubMed
Google Scholar
Louis J, Lorenc-Kukula K, Singh V, Reese J, Jander G, Shah J (2010) Antibiosis against the green peach aphid requires the Arabidopsis thaliana
MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant J 64:800–811
CAS
PubMed
Google Scholar
Lu CF, Xin ZG, Ren ZH, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837–18842
PubMed Central
CAS
PubMed
Google Scholar
Lu SY, Zhao HY, Des Marais DL, Parsons EP, Wen XX, Xu XJ, Bangarusamy DK, Wang GC, Rowland O, Juenger T, Bressan RA, Jenks MA (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944
PubMed Central
CAS
PubMed
Google Scholar
Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-Type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the aw-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487
CAS
PubMed
Google Scholar
Marchive C, Nikovics K, To A, Lepiniec L, Baud S (2014) Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur J Lipid Sci Technol 116:1332–1343
CAS
Google Scholar
Menard R, Verdier G, Ors M, Erhardt M, Beisson F, Shen WH (2014) Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana. Plant Cell Physiol 55:455–466
CAS
PubMed
Google Scholar
Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating FATTY ACID DESATURASE3. Plant Cell 25:3104–3116
PubMed Central
CAS
PubMed
Google Scholar
Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M (2014) Arabidopsis bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta 240:77–89
CAS
PubMed
Google Scholar
Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021
CAS
PubMed
Google Scholar
Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H (2010) Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Mol Biol 72:533–544
CAS
PubMed
Google Scholar
Newman T, Debruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994) Genes galore-a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis CDNA clones. Plant Physiol 106:1241–1255
PubMed Central
CAS
PubMed
Google Scholar
Niu XP, Helentjaris T, Bate NJ (2002) Maize AB14 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14:2565–2575
PubMed Central
CAS
PubMed
Google Scholar
Ogas J, Cheng JC, Sung ZR, Somerville C (1997) Cellular Differentiation Regulated by Gibberellin in the Arabidopsis thaliana Pickle Mutant. Science 277:91–94
CAS
PubMed
Google Scholar
Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844
PubMed Central
CAS
PubMed
Google Scholar
Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee SM, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847
PubMed Central
CAS
PubMed
Google Scholar
O’Malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of t-dna inserts in the Arabidopsis genome. Nat Protoc 2:2910–2917
PubMed
Google Scholar
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-Like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624
PubMed Central
CAS
PubMed
Google Scholar
Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899
PubMed Central
CAS
PubMed
Google Scholar
Peters C, Li MY, Narasimhan R, Roth M, Welti R, Wang XM (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659
PubMed Central
CAS
PubMed
Google Scholar
Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerstrom M, Andersson MX (2013) Arabidopsis phospholipase D delta is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906
PubMed Central
CAS
PubMed
Google Scholar
Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:252–267
Google Scholar
Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A, Parker JE, Teige M, Scherer GFE (2010) Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant 3:524–538
CAS
PubMed
Google Scholar
Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis Encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840
CAS
PubMed
Google Scholar
Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152
PubMed Central
CAS
PubMed
Google Scholar
Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant MolBiol 60:377–387
CAS
Google Scholar
Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388
PubMed Central
CAS
PubMed
Google Scholar
Song QX, Li QT, Liu YF, Zhang FX, Ma B, Zhang WK, Man WQ, Du WG, Wang GD, Chen SY, Zhang JS (2013) Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. J Exp Bot 64:4329–4341
PubMed Central
CAS
PubMed
Google Scholar
Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811
PubMed Central
CAS
PubMed
Google Scholar
Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y (2002) ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol 43:419–428
CAS
PubMed
Google Scholar
To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24:5007–5023
PubMed Central
CAS
PubMed
Google Scholar
Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan JL, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027
PubMed Central
CAS
PubMed
Google Scholar
Troncoso-Ponce MA, Cao X, Yang ZL, Ohlrogge JB (2013) Lipid turnover during senescence. Plant Sci 205:13–19
PubMed
Google Scholar
Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 104:2543–2547
PubMed Central
CAS
PubMed
Google Scholar
Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42
CAS
PubMed
Google Scholar
Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C, Miura A, Nakamura Y, Mori IC, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460
PubMed Central
CAS
PubMed
Google Scholar
Vijayaraj P, Jashal CB, Vijayakumar A, Rani SH, Rao DKV, Rajasekharan R (2012) A bifunctional enzyme that has both monoacylglycerol acyltransferase and acyl hydrolase activities. Plant Physiol 160:667–683
PubMed Central
CAS
PubMed
Google Scholar
Voisin D, Nawrath C, Kurdyukov S, Franke RB, Reina-Pinto JJ, Efremova N, Will I, Schreiber L, Yephremov A (2009) Dissection of the complex phenotype in cuticular mutants of Arabidopsis Reveals a role of SERRATE as a mediator. PLoS Genet 5:e1000703
PubMed Central
PubMed
Google Scholar
Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278
CAS
PubMed
Google Scholar
Wang FF, Perry SE (2013) Identification of direct targets of FUSCA3, a key regulator of arabidopsis seed development. Plant Physiol 161:1251–1264
PubMed Central
CAS
PubMed
Google Scholar
Watanabe M, Tanaka H, Watanabe D, Machida C, Machida Y (2004) The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J 39:298–308
CAS
PubMed
Google Scholar
Wu RH, Li SB, He S, Wassmann F, Yu CH, Qin GJ, Schreiber L, Qu LJ, Gu HY (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–3411
PubMed Central
CAS
PubMed
Google Scholar
Xia Y, Yu KS, Navarre D, Seebold K, Kachroo A, Kachroo P (2010) The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–846
PubMed Central
CAS
PubMed
Google Scholar
Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, Ingram GC (2013) ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770–779
CAS
PubMed
Google Scholar
Yang WY, Devaiah SP, Pan XQ, Isaac G, Welti R, Wang XM (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128
CAS
PubMed
Google Scholar
Yang Y, Yu XC, Song LF, An CC (2011) ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol 156:873–883
PubMed Central
CAS
PubMed
Google Scholar
Yang WY, Zheng Y, Bahn SC, Pan XQ, Li MY, Vu HS, Roth MR, Scheu B, Welti R, Hong YY, Wang XM (2012) The patatin-containing phospholipase A pPLAII alpha modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant 5:452–460
PubMed Central
CAS
PubMed
Google Scholar
Yeats TH, Martin LBB, Viart HMF, Isaacson T, He YH, Zhao LX, Matas AJ, Buda GJ, Domozych DS, Clausen MH, Rose JKC (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8:609–611
PubMed Central
CAS
PubMed
Google Scholar
Yeats TH, Huang WL, Chatterjee S, Viart HMF, Clausen MH, Stark RE, Rose JKC (2014) Tomato cutin deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant Journal 77:667–675
PubMed Central
CAS
PubMed
Google Scholar
Zhang M, Fan JL, Taylor DC, Ohlrogge JB (2009a) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901
PubMed Central
CAS
PubMed
Google Scholar
Zhang YY, Zhu HY, Zhang Q, Li MY, Yan M, Wang R, Wang LL, Welti R, Zhang WH, Wang XM (2009b) Phospholipase D alpha 1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377
PubMed Central
CAS
PubMed
Google Scholar
Zhao J, Devaiah SP, Wang CX, Li MY, Welti R, Wang XM (2013) Arabidopsis phospholipase D1 modulates defense responses to bacterial and fungal pathogens. New Phytol 199:228–240
PubMed Central
CAS
PubMed
Google Scholar
Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69:689–700
CAS
PubMed
Google Scholar
Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana
TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653
CAS
PubMed
Google Scholar