Skip to main content
Log in

Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape.

Abstract

Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls: from chemistry to biology. Garland Science, New York

    Google Scholar 

  • Apel MA, Ribeiro VLS, Bordignon SAL, Henriques AT, von Poser G (2009) Chemical composition and toxicity of the essential oils from Cunila species (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Parasitol Res 105:863–868

    Article  PubMed  Google Scholar 

  • Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G et al (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 7:e1000179

    Article  PubMed Central  PubMed  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr. (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59

    Article  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol 129:486–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bukatsch F (1972) Bermerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61:255

    Google Scholar 

  • Burckhardt D (2005) Biology, ecology and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, Plymouth

    Google Scholar 

  • Buvat R (1989) Ontogeny, cell differentiation and structure of vascular plants. Springer, Berlin

    Book  Google Scholar 

  • Cao Y, Li J, Yu L, Chai G, He G, Hu R, Qi G, Kong Y, Fu C, Zhou G (2014) Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection. Plant Cell Rep 33:643–653

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RGS, Burckhardt D, Isaias RMS (2013) Biology and systematics of gall-inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). Zootaxa 3620:129–146

    Article  Google Scholar 

  • Carneiro RGS, Castro AC, Isaias RMS (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. South Afr J Bot 92:97–104

    Article  CAS  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281–309

    Article  CAS  PubMed  Google Scholar 

  • Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R (1998) Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy. Implications in cell wall expansion. J Biol Chem 273:33150–33156

    Article  CAS  PubMed  Google Scholar 

  • Chaves I, Regalado AP, Chen M, Ricardo CP, Showalter AM (2002) Programmed cell death induced by (β-D-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspension-cultured cells. Physiol Plant 116:548–553

    Article  CAS  Google Scholar 

  • Clausen MH, Ralet MC, Willats WGT, McCartney L, Marcus SE, Thibault JF, Knox JP (2004) A monoclonal antibody to feruloylated-(1→4)-β-D-galactan. Planta 219:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Dias GG, Moreira GRP, Ferreira BG, Isaias RMS (2013) Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors? Biochem Syst Ecol 48:111–122

    Article  CAS  Google Scholar 

  • Dolan L, Linstead P, Roberts K (1997) Developmental regulation of pectic polysaccharides in the root meristem of Arabidopsis. J Exp Bot 48:713–720

    Article  CAS  Google Scholar 

  • Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760

    Article  Google Scholar 

  • Formiga AT, Soares GLG, Isaias RMS (2011) Responses of the host plant tissues to gall induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae). Am J Plant Sci 2:823–834

    Article  Google Scholar 

  • Formiga AT, Oliveira DC, Ferreira BG, Magalhães TA, Castro AC, Fernandes GW, Isaias RMS (2013) The role of pectic composition of cell walls in the determination of the new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma. 250:899–908. doi:10.1007/s00709-012-0473-8

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Nothnagel EA (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol 135:1346–1366

    Article  PubMed Central  PubMed  Google Scholar 

  • Ha MA, Evans BW, Jarvis MC, Apperly DC, Kenwright AM (1996) CP-MAS NMR of highly mobile hydrated biopolymers: polysaccharides of Allium cell walls. Carbohydr Res 288:15–23

    Article  CAS  Google Scholar 

  • Hori K (1992) Insect secretion and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfristsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 157–170

    Google Scholar 

  • Hwang J, Kokini JL (1991) Structure and rheological function of side branches of carbohydrate polymers. J Texture Stud 22:123–167

    Article  CAS  Google Scholar 

  • Isaias RMS, Oliveira DC, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89:581–592

    Article  Google Scholar 

  • Isaias RMS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop Entomol 42:230–239

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectic gels in plant cell walls. Plant Cell Environ 7:153–164

    CAS  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-galactan. Plant Physiol 113:1405–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  PubMed  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual Básico de Métodos em Morfologia Vegetal. EDUR, Seropédica RJ

    Google Scholar 

  • Kraus JE, Arduin M, Venturelli M (2002) Anatomy and ontogenesis of hymenopteran leaf galls of Struthanthus vulgaris Mart. (Loranthaceae). Rev Brasil Bot 25:449–458

    Article  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Leroux O, Leroux F, Bagniewska-Zadworna A, Knox JP, Claeys M, Bals S, Viane RLL (2011) Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales). Micron 42:863–870

    Article  CAS  PubMed  Google Scholar 

  • Lev-Yadun S (2003) Stem cells in plants are differentiated too. Curr Topics Plant Biol 4:93–100

    Google Scholar 

  • Liu Q, Talbot M, Llevellyn DJ (2013) Pectin methylesterase and pectin remodeling differ in fiber walls of two Gossypium species with very diffent fibre properties. PLoS One 8:e65131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lord EM, Mollet JC (2002) Plant cell adhesion: a bioassay facilitates discovery of the first pectin biosynthetic gene. PNAS 99:15843–15845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magalhães TA, Oliveira DC, Suzuki AYM, Isaias RMS (2014) Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC. (Asteraceae). Protoplasma 251:747–753

    Article  PubMed  Google Scholar 

  • Mastroberti AA, Mariath JEA (2008) Imunocitochemistry of the mucilage cells of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Rev Bras Bot 31:1–13

    Article  Google Scholar 

  • McCartney L, Knox JP (2002) Regulation of pectic polysaccharide domains in relation to cell development and cell properties in the pea testa. J Exp Bot 53:707–713

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1-4)-D-galactan in cell walls of developing pea cotyledons implications for mechanical properties. Plant J 22:105–113

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2002) Biosynthesis of pectins. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. Blackwell Publishing and CRC Press, Oxford, pp 52–98

    Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2008) Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em Lantana camara L. (Verbenaceae). Rev Bras Bot 32:271–282

    Article  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2009) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara (Verbenaceae). Aust J Bot 56:153–160

    Article  Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. PNAS 97:13184–13187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, Melbourne

    Google Scholar 

  • O’Donoghue EM, Sutherland PW (2012) Cell wall polysaccharide distribution in Sandersonia aurantiaca flowers using immunedetection. Protoplasma 249:843–849

    Article  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS (2010) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248

    Article  Google Scholar 

  • Oliveira DC, Magalhães TA, Ferreira BG, Teixeira CT, Formiga AT, Fernandes GW, Isaias RMS (2014) Variation in the degree of pectin methylesterification during the development of Baccharis dracunculifolia kidney-shaped gall. PLoS One 9:e94588

    Article  PubMed Central  PubMed  Google Scholar 

  • Raman A (2007) Insect-induced plant galls of India: unresolved questions. Curr Sci 92:748–757

    Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University, Oxford, pp 60–86

    Google Scholar 

  • Sabba RP, Lulai EC (2005) Immunocytological analysis of potato tuber periderm and changes in pectin and extension epitopes associated with periderm maturation. J Am Soc Hortic Sci 130:936–942

    CAS  Google Scholar 

  • SAS Institute (1989–2002). JMP. Version 5.0. SAS Institute. Cary, NC, USA

  • Smallwood M, Martin H, Knox JP (1995) An epitope of rice threonine and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma membrane glycoproteins. Planta 196:510–522

    Article  CAS  PubMed  Google Scholar 

  • Smallwood M, Yates EA, Willats WGT, Martin H, Knox JP (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459

    Article  CAS  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Vanderbosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J 8:335–342

    Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Weis AE, Abrahamson WG (1986) Evolution of host-plant manipulation by gallmakers: ecological and genetic factors in the Solidago-Eurosta system. Am Nat 127:681–695

    Article  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Limber G, Buhholt HC, Van Alebeek GJ, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320

    Article  CAS  PubMed  Google Scholar 

  • Willats WGA, McCartney L, Mackie L, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhao L, Pan X, Šamaj J (2011) Developmental localization and methylesterification of pectin epitopes during somatic embryogenesis of banana (Musa spp. AAA). PLoS One 6:e22992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeiss C (2008) Carl Zeiss Imaging Systems—32 software release 4.7.2. USA. Carl Zeiss Microimaging Inc

Download references

Acknowledgments

We thank Fundação de Apoio à Pesquisa do Estado de Minas Gerais (FAPEMIG—APQ- 00901-11), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Grant Number 307007/2012-2), and Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA—Project: “Manejo e biodiversidade de Psylloidea associados ao sistema integração lavoura-pecuária-floresta e à citricultura no Brasil”, number 02.12.01.028.00.00) for the financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We also thank Centro de Aquisição e Processamento de Imagens (CAPI-ICB/UFMG) for the analyses in confocal microscopy, and Dr. G. W. Fernandes, Dr. J. E. Kraus and Dr. M. Inbar for comments on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy M. S. Isaias.

Additional information

Communicated by Xian Sheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, R.G.S., Oliveira, D.C. & Isaias, R.M.S. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). Plant Cell Rep 33, 2093–2106 (2014). https://doi.org/10.1007/s00299-014-1683-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1683-7

Keywords

Navigation