Skip to main content
Log in

Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The morphogenesis of galls occurs by the redifferentiation of cells that assume new functions in the modified host plant organs. The redifferentiated cells in the galls of Nothotrioza myrtoidis on Psidium myrtoides have low complexity metabolism and are photosynthesis-deficient. These galls were studied in search for evidences of the establishment of new cell cycles and fates and cytological gradients that corroborate their metabolic profile. Young and mature leaves of P. myrtoides and leaf galls induced by N. myrtoidis at different developmental stages were collected along 24 months and analyzed under light and transmission electron microscopy. The leaves of P. myrtoides are long-lasting and did not senesce within the analyzed period, while the galls have a shorter cycle, and senesce within 1 year. A homogenous parenchyma is established by a “standby-redifferentiation” of the chlorophyllous tissues, and sclerenchyma cells redifferentiate from parenchyma cells in the outer cortex of the mature galls. The lack of organelles, the underdeveloped lamellation of chloroplasts, and the occurrence of few plastoglobules are related to the photosynthetic deficiency of the galls. No cytological gradients were observed, but the organelle-rich cells of the vascular and perivascular parenchymas are similar to those of the nutritive tissues of galls induced by other insect taxa. These cells nearest to the feeding sites of N. myrtoidis present higher metabolism and well-developed apparatus for the prevention of oxidative stress. The features herein described corroborate the low metabolic profile of the galls as the cell cycles and fates of P. myrtoides are manipulated for completely new functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedetti CS, Ferreira BG, Castro NM, Isaias RMS (2013) The influence of parasitoidism on the anatomical and histochemical profiles of the host leaves in a galling Lepidoptera-Bauhinia ungulata system. Rev Bras Biociênc 11:242–249

    Google Scholar 

  • Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59

    Article  CAS  Google Scholar 

  • Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University, Oxford, pp 118–140

    Google Scholar 

  • Bukatsch F (1972) Bermerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61:255

    Google Scholar 

  • Buvat R (1989) Ontogeny, cell differentiation and structure of vascular plants. Springer Verlag, Berlin

    Book  Google Scholar 

  • Carneiro RGS, Burckhardt D, Isaias RMS (2013) Biology and systematics of gall-inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). Zootaxa 3620:129–146

    Article  Google Scholar 

  • Carneiro RGS, Castro AC, Isaias RMS (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot 92:97–104

    Article  CAS  Google Scholar 

  • Castro AC, Oliveira DC, Moreira ASFP, Lemos Filho JP, Isaias RMS (2012a) Source sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). S Afr J Bot 83:121–126

    Article  CAS  Google Scholar 

  • Castro ACR, Leite GLD, Oliveira DC, Isaias RMS (2012b) Morphological patterns of a hymenopteran gall on the leaflets of Caryocar brasiliense Camb. (Caryocaraceae). Am J Plant Sci 3:921–929

    Article  Google Scholar 

  • Dias GG, Ferreira BG, Moreira GRP, Isaias RMS (2013) Developmental pathways for leaves and galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). An Acad Bras Cienc 85:187–200

    Article  CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function and development. Wiley, Hoboken

    Book  Google Scholar 

  • Fahn A (1990) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760

    Article  Google Scholar 

  • Formiga AT, Isaias RMS, Soares GLG (2011) Responses of the host plant tissues to gall induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae). Am J Plant Sci 2:823–834

    Article  Google Scholar 

  • Gianoli E, Valladares F (2012) Studying phenotypic plasticity: the advantages of a broad approach. Biol J Linnean Soc 105:1–7

    Article  Google Scholar 

  • Guimarães ALA, Bizarri CHB, Barbosa LS, Nakamura MJ, Ramos MFS, Vieira ACM (2013) Characterization of the effects of leaf galls of Clusiamyia nitida (Cecidomyiidae) on Clusia lanceolata Cambess. (Clusiaceae): anatomical aspects and chemical analysis of essential oil. Flora 208:165–173

    Article  Google Scholar 

  • Guimarães ALA, Cruz SMS, Vieira ACM (2014) Structure of floral galls of Byrsonima sericea (Malpighiaceae) induced by Bruggmanniella byrsonimae (Cecidomyiidae, Diptera) and their effects on host plants. Plant Biol 16(2):467–475

    Article  PubMed  Google Scholar 

  • Hori K (1992) Insect secretion and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfristsch O (eds) Biology of insect-induced galls. Oxford University Press, New York

    Google Scholar 

  • Isaias RMS, Oliveira DC, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89:581–592

    Article  Google Scholar 

  • Jager SM, Maughan S, Dewitte W, Scofield S, Murray JAH (2005) The developmental context of cell-cycle control in plants. Semin Cell Dev Biol 16:385–396

    Article  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New York

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kraus JE (2009) Galhas: morfogênese, relações ecológicas e importância econômica. In: Tissot-Squalli ML (ed) Interações Ecológicas & Biodiversidade. Unijuí, Ijuí, pp 109–140

    Google Scholar 

  • Kraus JE, Arduin M (1997) Manual Básico de Métodos em Morfologia Vegetal. EDUR, Seropédica

    Google Scholar 

  • Lev-Yadun S (2003) Stem cells in plants are differentiated too. Curr Opin Plant Biol 4:93–100

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Article  CAS  PubMed  Google Scholar 

  • Mani MS (1964) Ecology of plant galls. Dr. W. Junk Publishers, The Hague

    Book  Google Scholar 

  • Mauseth JD (1988) Plant anatomy. Benjamin Cummings Publishing Company, Menlo Park

    Google Scholar 

  • Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2009) Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em folhas de Lantana camara L. (Verbenaceae). Rev Bras Bot 32:271–282

    Article  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termacarphi Pty, Melbourne

    Google Scholar 

  • Oliveira DC, Isaias RMS (2009) Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). Rev Biol Trop 57:293–302

    PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS (2010a) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248

    Article  Google Scholar 

  • Oliveira DC, Isaias RMS (2010b) Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358

    Article  Google Scholar 

  • Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS (2011a) Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae) Cecidomyiidae gall systems. Protoplasma 248:829–837

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos Fillho JP (2011b) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Sci 180:489–495

    Article  PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72:157–165

    Article  Google Scholar 

  • Raman A, Ananthakrishnan TN (1983) Studies on some thrips (Thysanoptera: Insecta) induced galls. 2. Fine-structure of the nutritive zone. Proc Indian Natl Sci Acad 6:525–561

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University, Oxford, pp 60–86

    Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Vecchi C, Menezes NL, Oliveira DC, Ferreira BG, Isaias RMS (2013) The redifferentiation of nutritive cells in galls induced by Lepidoptera on Tibouchina pulchra (Cham.) Cogn. reveals predefined patterns of plant development. Protoplasma 250:1363–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fundação de Apoio à Pesquisa do estado de Minas Gerais (FAPEMIG–APQ-00901–11), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—grant number 307007/2012-2), and Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA–Project: “Manejo e biodiversidade de Psylloidea associados ao sistema integração lavoura-pecuária-floresta e à citricultura no Brasil,” number 02.12.01.028.00.00) for the financial support. We also thank Centro de Microscopia of Universidade Federal de Minas Gerais (CM-UFMG) for the analyses in transmission electron microscopy and M.Sc. BG Ferreira for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. S. Isaias.

Additional information

Handling Editor: Hanns H. Kassemeyer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, R.G.S., Isaias, R.M.S. Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis . Protoplasma 252, 637–646 (2015). https://doi.org/10.1007/s00709-014-0709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0709-x

Keywords

Navigation