Advertisement

Plant Cell Reports

, Volume 33, Issue 12, pp 1963–1976 | Cite as

Knockdown of the 7S globulin subunits shifts distribution of nitrogen sources to the residual protein fraction in transgenic soybean seeds

  • Tetsuya YamadaEmail author
  • Yoshihiro Mori
  • Kazuho Yasue
  • Nobuyuki Maruyama
  • Keisuke Kitamura
  • Jun Abe
Original Paper

Abstract

Key message

A platform of gene silencing by amiRNA had been established in fertile transgenic soybean. We demonstrated that knockdown of storage protein shifted the distribution of nitrogen sources in soybean seeds.

Abstract

Artificial microRNAs (amiRNAs) were designed using the precursor sequence of the endogenous soybean (Glycine max L. Merrill) miRNA gma-miR159a and expressed in transgenic soybean plants to suppress the biosynthesis of 7S globulin, which is one of the major storage proteins. Seed-specific expression of these amiRNAs (amiR-7S) resulted in a strong suppression of 7S globulin subunit genes and decreased accumulation of the 7S globulin subunits in seeds. Thus, the results demonstrate that a platform for gene silencing by amiRNA was first developed in fertile transgenic soybean plants. There was no difference in nitrogen, carbon, and lipid contents between amiR-7S and control seeds. Four protein fractions were collected from defatted mature seeds on the basis of solubility at different pH to examine the distribution of nitrogen sources and compensatory effects. In the whey and lipophilic fractions, nitrogen content was similar in amiR-7S and control seeds. Nitrogen content was significantly decreased in the major soluble protein fraction and increased in the residual fraction (okara) of the amiR-7S seeds. Amino acid analysis revealed that increased nitrogen compounds in okara were proteins or peptides rather than free amino acids. Our study indicates that the decrease in 7S globulin subunits shifts the distribution of nitrogen sources to okara in transgenic soybean seeds.

Keywords

Glycine max AmiRNA Gene silencing Storage protein Protein content Amino acids 

Notes

Acknowledgments

We thank Y. Kitsui and M. Suzuki (Hokkaido University), and E. Okuda (Kyoto University) for technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (23580002) and by CREST of the Japan Science and Technology Agency (JAT).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2014_1671_MOESM1_ESM.docx (899 kb)
Supplementary material 1 (DOCX 898 kb)

References

  1. Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13:304–316. doi: 10.1111/j.1438-8677.2010.00374.x PubMedCrossRefGoogle Scholar
  2. Allen DK, Young JD (2013) Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol 161:1458–1475. doi: 10.1104/pp.112.203299 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376. doi: 10.1073/pnas.0707653104 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771. doi: 10.1104/pp.110.160630 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brim CA, Burton JW (1979) Recurrent selection in soybeans. 2. Selection for increased percent protein in seeds. Crop Sci 19:494–498CrossRefGoogle Scholar
  6. Cober ER, Voldeng HD (2000) Developing high-protein, high-yield soybean populations and lines. Crop Sci 40:39–42CrossRefGoogle Scholar
  7. Diers BW, Keim P, Fehr WR, Shoemaker RC (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612PubMedCrossRefGoogle Scholar
  8. Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K (2011) Genetic variation of gamma-tocopherol methyltransferase gene contributes to elevated alpha-tocopherol content in soybean seeds. BMC Plant Biol. doi: 10.1186/1471-2229-11-152 PubMedCentralPubMedGoogle Scholar
  9. Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163. doi: 10.1111/j.1467-7652.2011.00647.x PubMedCrossRefGoogle Scholar
  10. Fernandez AI, Viron N, Alhagdow M, Karimi M, Jones M, Amsellem Z, Sicard A, Czerednik A, Angenent G, Grierson D, May S, Seymour G, Eshed Y, Lemaire-Chamley M, Rothan C, Hilson P (2009) Flexible tools for gene expression and silencing in tomato. Plant Physiol 151:1729–1740. doi: 10.1104/pp.109.147546 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fischer RL, Goldberg RB (1982) Structure and flanking regions of soybean seed protein genes. Cell 29:651–660. doi: 10.1016/0092-8674(82)90181-7 PubMedCrossRefGoogle Scholar
  12. Goto K, Kanazawa A, Kusaba M, Masuta C (2003) A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol Biol Rep 21:51–58. doi: 10.1007/bf02773396 CrossRefGoogle Scholar
  13. Hajika M, Takahashi M, Sakai SJ, Igita K (1996) A new genotype of 7 S globulin (beta-conglycinin) detected in wild soybean (Glycine soja Sieb et Zucc). Breed Sci 46:385–386Google Scholar
  14. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613PubMedCentralPubMedCrossRefGoogle Scholar
  15. Iwabuchi S, Yamauchi F (1987) Electrophoretic analysis of whey proteins present in soybean globulin fractions. J Agric Food Chem 35:205–209. doi: 10.1021/jf00074a010 CrossRefGoogle Scholar
  16. Kinney AJ, Jung R, Herman EM (2001) Cosuppression of the alpha subunits of beta-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13:1165–1178. doi: 10.1105/tpc.13.5.1165 PubMedCentralPubMedGoogle Scholar
  17. Kitamura K, Davies CS, Nielsen NC (1984) Inheritance of alleles for cgy1 and gy4 storage protein genes in soybean. Theo Appl Genet 68:253–257. doi: 10.1007/bf00266899 CrossRefGoogle Scholar
  18. Krishnan HB, Natarajan SS, Mahmoud AA, Nelson RL (2007) Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines. J Agric Food Chem 55:1839–1845. doi: 10.1021/jf062497n PubMedCrossRefGoogle Scholar
  19. Kwanyuen P, Pantalone VR, Burton JW, Wilson RF (1997) A new approach to genetic alteration of soybean protein composition and quality. J Am Oil Chem Soc 74:983–987. doi: 10.1007/s11746-997-0015-2 CrossRefGoogle Scholar
  20. Li C, Zhang YM (2011) Molecular evolution of glycinin and beta-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity 106:633–641. doi: 10.1038/hdy.2010.97 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336CrossRefGoogle Scholar
  22. Maruyama N, Prak K, Motoyama S, Choi SK, Yagasaki K, Ishimoto M, Utsumi S (2004) Structure-physicochemical function relationships of soybean glycinin at subunit levels assessed by using mutant lines. J Agric Food Chem 52:8197–8201. doi: 10.1021/jf048786y PubMedCrossRefGoogle Scholar
  23. Mateos-Aparicio I, Mateos-Peinado C, Ruperez P (2010) High hydrostatic pressure improves the functionality of dietary fiber in okara by-product from soybean. Innov Food Sci Emerg Technol 11:445–450. doi: 10.1016/j.ifset.2010.02.003 CrossRefGoogle Scholar
  24. Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol. doi: 10.1186/1471-2229-10-104 PubMedCentralPubMedGoogle Scholar
  25. Mori T, Utsumi S, Inaba H, Kitamura K, Harada K (1981) Differences in subunit composition of glycinin among soybean cultivars. J Agric Food Chem 29:20–23. doi: 10.1021/jf00103a006 PubMedCrossRefGoogle Scholar
  26. Mori T, Maruyama N, Nishizawa K, Higasa T, Yagasaki K, Ishimoto M, Utsumi S (2004) The composition of newly synthesized proteins in the endoplasmic reticulum determines the transport pathways of soybean seed storage proteins. Plant J 40:238–249. doi: 10.1111/j.1365-313X.2004.02204.x PubMedCrossRefGoogle Scholar
  27. Nakamura T, Utsumi S, Kitamura K, Harada K, Mori T (1984) Cultivar differences in gelling characteristics of soybean glycinin. J Agric Food Chem 32:647–651. doi: 10.1021/jf00123a055 CrossRefGoogle Scholar
  28. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289. doi: 10.1105/tpc.2.4.279 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Narikawa T, Tamura T, Yagasaki K, Terauchi K, Sanmiya K, Ishimaru Y, Abe K, Asakura T (2010) Expression of the stress-related genes for glutathione S-transferase and ascorbate peroxidase in the most-glycinin-deficient soybean cultivar Tousan205 during seed maturation. Biosci Biotechnol Biochem 74:1976–1979. doi: 10.1271/bbb.100479 PubMedCrossRefGoogle Scholar
  30. Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ, Fischer RL, Sims TL, Drews GN, Goldberg RB (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328. doi: 10.1105/tpc.1.3.313 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nishizawa K, Maruyama N, Satoh R, Fuchikami Y, Higasa T, Utsumi S (2003) A C-terminal sequence of soybean beta-conglycinin alpha ‘ subunit acts as a vacuolar sorting determinant in seed cells. Plant J 34:647–659. doi: 10.1046/j.1365-313X.2003.01754.x PubMedCrossRefGoogle Scholar
  32. Nishizawa K, Takagi K, Teraishi M, Kita A, Ishimoto M (2010) Application of somatic embryos to rapid and reliable analysis of soybean seed components by RNA interference-mediated gene silencing. Plant Biotechnol 27:409–420Google Scholar
  33. Niu Q-W, Lin S–S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnol 24:1420–1428. doi: 10.1038/nbt1255 CrossRefGoogle Scholar
  34. Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18:455–463. doi: 10.1046/j.1365-313X.1999.00464.x PubMedCrossRefGoogle Scholar
  35. Ogawa T, Tayama E, Kitamura K, Kaizuma N (1989) Genetic-improvement of seed storage proteins using 3 variant alleles of 7S globulin subunits in soybean (Glycine-max L). Jpn J Breed 39:137–147CrossRefGoogle Scholar
  36. Ohtake N, Yamada S, Suzuki M, Takahashi N, Takahashi Y, Chinushi T, Ohyama T (1997) Regulation of accumulation of beta-subunit of beta-conglycinin in soybean seeds by nitrogen. Soil Sci Plant Nutrition 43:247–253CrossRefGoogle Scholar
  37. Pathan SM, Tri V, Clark K, Lee J-D, Shannon JG, Roberts CA, Ellersieck MR, Burton JW, Cregan PB (2013) Hyten Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53:765–774. doi: 10.2135/cropsci2012.03.0153 CrossRefGoogle Scholar
  38. Prak K, Nakatani K, Katsube-Tanaka T, Adachi M, Maruyama N, Utsumi S (2005) Structure-function relationships of soybean proglycinins at subunit levels. J Agric Food Chem 53:3650–3657. doi: 10.1021/jf047811x PubMedCrossRefGoogle Scholar
  39. Redondo-Cuenca A, Villanueva-Suarez MJ, Mateos-Aparicio I (2008) Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem 108:1099–1105. doi: 10.1016/j.foodchem.2007.11.061 CrossRefGoogle Scholar
  40. Samoto M, Miyazaki C, Kanamori J, Akasaka T, Kawamura Y (1998) Improvement of the off-flavor of soy protein isolate by removing oil-body associated proteins and polar lipids. Biosci Biotechnol Biochem 62:935–940. doi: 10.1271/bbb.62.935 CrossRefGoogle Scholar
  41. Samoto M, Maebuchi M, Miyazaki C, Kugitani H, Kohno M, Hirotsuka M, Kito M (2007) Abundant proteins associated with lecithin in soy protein isolate. Food Chem 102:317–322. doi: 10.1016/j.foodchem.2006.05.054 CrossRefGoogle Scholar
  42. Sato H, Yamada T, Kita Y, Ishimoto M, Kitamura K (2007) Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka. Plant Biotechnol 5:533–536CrossRefGoogle Scholar
  43. Scallon B, Thanh VH, Floener LA, Nielsen NC (1985) Identification and characterization of DNA clones encoding group-II glycinin subunits. Theor Appl Genet 70:510–519. doi: 10.1007/bf00305984 PubMedCrossRefGoogle Scholar
  44. Schmidt MA, Herman EM (2008) Proteome rebalancing in soybean seeds can be exploited to enhance foreign protein accumulation. Plant Biotechnol J 6:832–842. doi: 10.1111/j.1467-7652.2008.00364.x PubMedCrossRefGoogle Scholar
  45. Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM (2011) Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiol 156:330–345. doi: 10.1104/pp.111.173807 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444CrossRefGoogle Scholar
  47. Shi A, Chen P, Zhang B, Hou A (2010a) Genetic diversity and association analysis of protein and oil content in food-grade soybeans from Asia and the United States. Plant Breed 129:250–256. doi: 10.1111/j.1439-0523.2010.01766.x CrossRefGoogle Scholar
  48. Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010b) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288. doi: 10.1007/s00425-010-1253-3 PubMedCrossRefGoogle Scholar
  49. Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K (2008) Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci 58:361–366. doi: 10.1270/jsbbs.58.361 CrossRefGoogle Scholar
  50. Sorgentini DA, Wagner JR (1999) Comparative study of structural characteristics and thermal behavior of whey and isolate soybean proteins. J Food Biochem 23:489–507. doi: 10.1111/j.1745-4514.1999.tb00033.x CrossRefGoogle Scholar
  51. Takahashi K, Banba H, Kikuchi A, Ito M, Nakamura S (1994) An induced mutant line lacking the alpha-subunit of beta-conglycinin in soybean Glycine-max (L) Merrill. Breed Sci 65-66Google Scholar
  52. Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M (2003) Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217:577–586. doi: 10.1007/s00425-003-1026-3 PubMedCrossRefGoogle Scholar
  53. Tezuka M, Taira H, Igarashi Y, Yagasaki K, Ono T (2000) Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin. J Agric Food Chem 48:1111–1117. doi: 10.1021/jf990560l PubMedCrossRefGoogle Scholar
  54. Thanh VH, Shibasaki K (1976) Major proteins of soybean seeds—straightforward fractionation and their characterization. J Agric Food Chem 24:1117–1121PubMedCrossRefGoogle Scholar
  55. Thanh VH, Shibasaki K (1978) Major proteins of soybean seeds—reconstitution of beta-conglycinin from its subunits. J Agric Food Chem 26:695–698CrossRefGoogle Scholar
  56. Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM (2011) Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol J 9:684–692. doi: 10.1111/j.1467-7652.2010.00567.x PubMedCrossRefGoogle Scholar
  57. Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A, Katayose Y, Ishimoto M, Harada K (2012) The beta-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the alpha-subunit genes. Plant Mol Biol 78:301–309. doi: 10.1007/s11103-011-9865-y PubMedCrossRefGoogle Scholar
  58. Vanderriet WB, Wight AW, Cilliers JJL, Datel JM (1989) Food chemical investigation of tofu and its by-product okara. Food Chem 34:193–202. doi: 10.1016/0308-8146(89)90140-4 CrossRefGoogle Scholar
  59. Wadahama H, Iwasaki K, Matsusaki M, Nishizawa K, Ishimoto M, Arisaka F, Takagi K, Urade R (2012) Accumulation of beta-conglycinin in soybean cotyledon through the formation of disulfide bonds between alpha ‘- and alpha-subunits. Plant Physiol 158:1395–1405. doi: 10.1104/pp.111.189621 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in Rice. Plos One. doi: 10.1371/journal.pone.0001829 PubMedCentralPubMedGoogle Scholar
  61. Yamada T, Ohashi Y, Ohshima M, Inui H, Shiota N, Ohkawa H, Ohkawa Y (2002) Inducible cross-tolerance to herbicides in transgenic potato plants with the rat CYP1A1 gene. Theor Appl Genet 104:308–314. doi: 10.1007/s001220100736 PubMedCrossRefGoogle Scholar
  62. Yamada T, Watanabe S, Arai M, Harada K, Kitamura K (2010) Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean. Plant Biotechnol 27:217–220CrossRefGoogle Scholar
  63. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182. doi: 10.1007/s00425-008-0818-x PubMedCrossRefGoogle Scholar
  64. Zhang B, Chen P, Florez-Palacios SL, Shi A, Hou A, Ishibashi T (2010) Seed quality attributes of food-grade soybeans from the US and Asia. Euphytica 173:387–396. doi: 10.1007/s10681-010-0126-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tetsuya Yamada
    • 1
    Email author
  • Yoshihiro Mori
    • 1
  • Kazuho Yasue
    • 2
  • Nobuyuki Maruyama
    • 3
  • Keisuke Kitamura
    • 1
  • Jun Abe
    • 1
  1. 1.Graduate School of AgricultureHokkaido UniversitySapporoJapan
  2. 2.School of AgricultureHokkaido UniversitySapporoJapan
  3. 3.Graduate School of AgricultureKyoto UniversityUjiJapan

Personalised recommendations