Skip to main content
Log in

Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.

Abstract

H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CaMV:

Cauliflower mosaic virus

Fv/Fm:

Maximal photochemical efficiency

GFP:

Green fluorescent protein

Gs:

Stomatal conductance

ORF:

Open reading frame

PEG 6000:

Polyethylene glycol 6000

Pn:

Net photosynthetic rate

qRT-PCR:

Quantitative real-time PCR

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain reaction

WT:

Wild type

References

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 4:184–186

    Google Scholar 

  • Alsaadawi IS, Al-Hadithy SM, Arif MB (1986) Effects of three phenolic acids on chlorophyll content and ions uptake in cowpea seedlings. J Chem Ecol 12:221–227

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi R, Gantt JS (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol 34:629–641

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi R, Gantt JS (1999) Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma 108:345–355

    Article  PubMed  CAS  Google Scholar 

  • Basak M, Sharma M, Chakraborty U (2001) Biochemical responses of Camellia sinensis (L.) O. Kuntze to heavy metal stress. J Environ Biol 22:37–41

    PubMed  CAS  Google Scholar 

  • Breneman JW, Yau P, Teplitz RL, Bradbury EM (1993) A light microscope study of linker histone distribution in rat metaphase chromosomes and interphase nuclei. Exp Cell Res 206:16–26

    Article  PubMed  CAS  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Rep 30:1088–1101

    Article  CAS  Google Scholar 

  • Fang WP, Zhang Y, Zhou L, Wang WD, Li XH (2013) Isolation and characterization of Histone1 gene and its promoter from tea plant (Camellia sinensis). Mol Biol Rep 40:3641–3648

    Article  PubMed  CAS  Google Scholar 

  • Fu GQ, Xu S, Xie YJ, Han B, Nie L, Shen WB, Wang R (2011) Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiol Bioch 49:792–799

    Article  CAS  Google Scholar 

  • Gao YS, Huang WF, Zhu LY, Chen JS (2012) Effects of LaCl3 on the growth and photosynthetic characteristics of Fny-infected tobacco seedlings. J Rare Earth 30:725–730

    Article  CAS  Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic-Amsterdam 138:24–35

    Article  CAS  Google Scholar 

  • Huang WM, Xing W, Li DH, Liu YD (2009) Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR. Chemosphere 76:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Jayawardene N, Riggs CD (1994) Molecular cloning, sequence analysis and differential expression of an intron-containing gene encoding tomato histone H1. Eur J Biochem 223:693–699

    Article  PubMed  CAS  Google Scholar 

  • Jerzmanowski A, Przewłoka M, Grasser KD (2000) Linker histones and HMG1 proteins of higher plants. Plant Biol 2:586–597

    Article  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991) Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254:238–245

    Article  PubMed  CAS  Google Scholar 

  • Li XW, Feng ZG, Yang HM, Zhu XP, Liu J, Yuan HY (2010) A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco. Biochem Biophys Res Co 394:354–359

    Article  CAS  Google Scholar 

  • Li L, Zhang C, Xu D, Schläppi M, Xu ZQ (2012) Expression of recombinant EARLI1, a hybrid proline-rich protein of Arabidopsis, in Escherichia coli and its inhibition effect to the growth of fungal pathogens and Saccharomyces cerevisiae. Gene 506:50–61

    Article  PubMed  CAS  Google Scholar 

  • Liu W, An HM, Yang M (2013) Overexpression of Rosa roxburghii l-galactono-1, 4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant 35:1617–1624

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Neilson KA, Mariani M, Haynes PA (2011) Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11:1696–1706

    Article  PubMed  Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    Article  CAS  Google Scholar 

  • Prymakowska-Bosak M, Przewłoka MR, Iwkiewicz J, Egierszdorff S, Kuraś M, Chaubet N, Gigot C, Spiker S, Jerzmanowski A (1996) Histone H1 overexpressed to high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions. Proc Natl Acad Sci USA 93:10250–10255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prymakowska-Bosak M, Przewloka MR, Ślusarczyk J, Kuraś M, Lichota J, Kiliańczyk B, Jerzmanowski A (1999) Linker histones play a role in male meiosis and the development of pollen grains in tobacco. Plant Cell 11:2317–2329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Przewloka MR, Wierzbicki AT, Ślusarczyk J, Kuraś M, Grasser KD, Stemmer C, Jerzmanowski A (2002) The “drought-inducible” histone H1s of tobacco play no role in male sterility linked to alterations in H1 variants. Planta 215:371–379

    Article  PubMed  CAS  Google Scholar 

  • Raghuram N, Carrero G, Th’ng J, Hendzel MJ (2009) Molecular dynamics of histone H1. Biochem Cell Biol 87:189–206

    Article  PubMed  CAS  Google Scholar 

  • Razafimahatratra P, Chaubet N, Philipps G, Gigot C (1991) Nucleotide sequence and expression of a maize H1 histone cDNA. Nucleic Acids Res 19:1491–1496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scarascia-Mugnozza G, Angelis PD, Matteucci G, Valentini R (1996) Long-term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:643–654

    Article  CAS  Google Scholar 

  • Scippa GS, Griffiths A, Chiatante D, Bray EA (2000) The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta 211:173–181

    Article  PubMed  CAS  Google Scholar 

  • Shen XT, Gorovsky MA (1996) Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86:475–483

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Haizel T, Adam E, Nagy F (1995) Molecular characterization and expression of a tobacco histone H1 cDNA. Plant Mol Biol 27:597–605

    Article  PubMed  CAS  Google Scholar 

  • Tanaka I, Akahori Y, Gomi K, Suzuki T, Ueda K (1999) A novel histone variant localized in nucleoli of higher plant cells. Chromosoma 108:190–199

    Article  PubMed  CAS  Google Scholar 

  • Trivedi I, Ranjan A, Sharma YK, Sawant S (2012) The histone H1 variant accumulates in response to water stress in the drought tolerant genotype of Gossypium herbaceum L. Protein J 31:477–486

    Article  PubMed  CAS  Google Scholar 

  • Voelker T, Sturm A, Chrispeels MJ (1987) Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J 6:3571–3577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wan Q, Xu RK, Li XH (2012) Proton release by tea plant (Camellia sinensis L.) roots as affected by nutrient solution concentration and pH. Plant Soil Environ 58(9):429–434

    CAS  Google Scholar 

  • Wang JN, Kuang JF, Shan W, Chen J, Xie H, Lu WJ, Chen JW, Chen JY (2012a) Expression profiles of a banana fruit linker histone H1 gene MaHIS1 and its interaction with a WRKY transcription factor. Plant Cell Rep 31:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Li XC, Zhu-Ge Q, Jiang X, Wang WD, Fang WP, Chen X, Li XH (2012b) Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PloS One 7(12):e52436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei T, O’Connell MA (1996) Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol Biol 30:255–268

    Article  PubMed  CAS  Google Scholar 

  • Widom J (1998) Chromatin structure: linking structure to function with histone H1. Curr Biol 8:R788–R791

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicki AT, Jerzmanowski A (2005) Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169:997–1008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolffe AP, Khochbin S, Dimitrov S (1997) What do linker histones do in chromatin? BioEssays 19:249–255

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Katsura M, Nakayama T, Mikami K, Iwabuchi M (1991) Molecular cloning and nucleotide sequences of cDNAs for histone H1 and H2B variants from wheat. Nucleic Acids Res 19:5077

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31370014) and the earmarked fund for Modern Agro-industry Technology Research System (CARS-23).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Li.

Additional information

Communicated by Prakash Lakshmanan.

W. Wang and Y. Wang these authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The online version of this article contains supplementary material, which is available to authorized users.

Supplementary material 1 (DOCX 5488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Y., Du, Y. et al. Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 33, 1829–1841 (2014). https://doi.org/10.1007/s00299-014-1660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1660-1

Keywords

Navigation